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demand for financial derivatives. In this paper, we provide an intensive empirical in-

vestigation among popular discrete time option pricing models in terms of their pricing

performance when applied to SSE 50 ETF options. We find newly developed pricing

models with realized measures significantly outperform the conventional GARCH-type

models based on daily returns. In particular, our empirical results suggest that the
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1 Introduction

Options are one of the most important types of fundamental derivatives in global markets.

They have been widely used in areas such as risk management and price discovery. Starting

in the late 1990s, the Chinese stock market has experienced nearly 30 years of growth. The
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total market capitalization reached 56.62 trillion RMB by the end of 2017, making it the

second largest stock market in the world. The inclusion of A shares in the MSCI index

marks the growing importance of China’s stock market to the global financial system and

highlights the need for risk management instruments. On February 9, 2015, China launched

its first exchange-based option-the Shanghai Stock Exchange (SSE) 50 ETF option. Unlike

index options such as the S&P500 option, this option is written on SSE 50 ETF, which is

the first and most liquid ETF in China’s stock market. It covers 50 blue chip stocks listed on

the SSE. The trading volume and open interest have increased nearly 70 fold over the past

three years and the number of qualified investors has increased 100 fold1. This fast-growing

market needs reliable pricing models.

Black and Scholes (1973) proposed the Black-Scholes formula for option pricing based

on the constant volatility geometric Brownian motions. However, studies since the 1978

market crash have rejected the constant volatility assumption. Newer models highlight the

modeling of dynamic volatility as the core of option pricing. Other than continuous time

models such as the one proposed by Heston (1993), researchers motivated by the success of

GARCH models in financial econometrics have investigated ways that GARCH models can

be applied to option valuation. Duan (1995) pioneered this area by introducing a possible

transition between physical and risk-neutral dynamics for GARCH models 2. Among early

studies of GARCH option pricing, Heston and Nandi (2000) made a significant contribution

by proposing a GARCH structure with a close form pricing formula for European options.

Christoffersen and Jacobs (2004) discussed a list of GARCH models in terms of their pric-

ing performance on S&P 500 index options. Other specifications in GARCH models such

as volatility components (Christoffersen et al. (2008)), non-normality (Christoffersen et al.

(2010)), etc. have also been discussed. Discrete time models are easier to estimate than

continuous time models and are time efficient for pricing large-scale option panels. In addi-

tion to LRNVR, risk neutralization methods such as the variance dependent pricing kernel

method (Christoffersen et al. (2013)) are also used in GARCH option pricing.

Over the past two decades, high-frequency financial data have drawn increasing atten-

tion from researchers. A variety of realized measures such as the realized variance (Ander-
1The number of qualified investors on the first trading day in 2015 was 2,626. There were 26,0040 by

early 2018.
2The transformation is called the locally risk-neutral valuation relationship (LRNVR).
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sen and Bollerslev (1998)), realized bipower-variation (Barndorff-Nielsen (2004)), realized

kernel (Barndorff-Nielsen et al. (2008)), etc. have been used to provide model-free estima-

tions of daily variance. Based on these model-free measures, reduced form models such as

the ARFIMA model (Andersen et al. (2003)) and complete models such as the Realized

GARCH model (Hansen et al. (2012), Hansen and Huang (2016)) have been proposed to

model volatility dynamics. With the help of realized measures, these models can identify

the volatility-specific shocks and assign them risk premium parameters based on the ex-

ponential affine stochastic pricing factor. Major GARCH-type models tailored for option

pricing include the GARV model (Christoffersen et al. (2014)), the Realized GARCH model

(Huang et al. (2017)), etc. The types of model used have been extended beyond GARCH

by Majewski et al. (2015), who introduced a LHARG model based on the popular reduced-

form HAR model (Corsi (2009)). All of these studies highlighted the importance of realized

measures in improving the pricing performance of discrete time models.

Although previous studies have made important contributions, several studies have fo-

cused on comparing different option pricing models to help guide model design. For exam-

ple, Christoffersen and Jacobs (2004) compared the option pricing performance of several

common GARCH models and highlighted the importance of the leverage effect and joint

estimation for both underlying and option data. However, most studies that have compared

option pricing models (especially discrete time models) focus on U.S. dataset, and little

attention has been paid to this issue in a Chinese context. The Chinese market is different

from the U.S. market in many ways. The option is a physically delivered ETF option rather

than a cash settled index option. In the Chinese market, the strikes are quite limited, the

time to maturity is shorter, and the cost of short selling is much higher than in the U.S. mar-

ket. Therefore, an extensive comparison of (discrete time) option pricing models, including

models with high-frequency data-based volatility measures, provides both academics and

practitioners valuable guidelines for choosing option pricing models in China.

Therefore, we intensively test a set of common discrete time volatility models that have

been used for option pricing in previous studies. The models include standard GARCH

models and realized measure based models in which risk neutralization is done with LRNVR,

variance dependent pricing kernel, and the exponential affine stochastic discount factor. For

those models without explicit option prices, Duan et al. (1999)’s method is used to determine
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an analytical approximated price. This technique has been tailored to the Realized GARCH

model used by Huang et al. (2017). All of the parameters are estimated with option-

underlying joint estimation and both in-sample and out-of-sample results are discussed.

The results show that discrete time models can be applied to price SSE 50 ETF options

with reasonable pricing errors. In line with previous studies, we find the realized measure-

based models have better in-sample and out-of-sample pricing performance over every kind

of option. The complex realized measures, although they are preferred in modeling and

forecasting volatility, do not provide better pricing results than simple realized measures

like the conventional realized variance. However, the Chinese data provide us with some

surprising results. The first is that although the leverage effect has been shown to have a

strong effect on the pricing of U.S. index options, it has much less effect on the modeling

of Chinese data. Second, the first year of trading in the Chinese market (2015), which

suffers from both extreme market volatility and severely limited arbitrage, is distinct from

subsequent years, suggesting that the first year needs to be either dropped from the sample

or treated separately.

The remainder of this paper is organized as follows. In Section 2, we provide the list of

models used in the comparison. In Section 3, we briefly introduce the estimation method

used. In Section 4, we present and discuss our empirical results. The last section concludes

the paper.

2 Model in comparison

In this study, we test nine discrete time volatility models including four GARCH models

(a standard GARCH model (GARCH, Engle and Bollerslev (1986)) and three aysmmetric

GARCH models (GJR-GARCH, Glosten et al. (1993); NGARCH, Engle and Ng (1993);

EGARCH, Nelson (1991))); two Heston-Nandi GARCH models (HNG, Heston and Nandi

(2000); HNGvd, Christoffersen et al. (2013))3; and three models with realized measures

(Realized GARCH (Hansen and Huang (2016)), GARV (Christoffersen et al. (2014)), and

LHARG (Majewski et al. (2015))). Table 1 describes the differences between these models.
3HNGvd in this study refers to a model with a variance-dependent pricing kernel (Christoffersen et al.

(2013)). The model is based on the original Heston-Nandi GARCH model, but the risk neutralization
method differs from the conventional LRNVR method proposed by Duan (1995).
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[Insert Table 1 here]

GARCH models

The GARCH models selected in this study are based on the following GARCH-in-mean

framework:

rt+1 = r + λ
√
ht+1 −

1

2
ht+1 +

√
ht+1zt+1

where zt follows a standard normal distribution. The parameter λ measures the required

return of an investor that is proportional to the conditional volatility. The variance equations

for the different models are as follows:

• Standard GARCH : ht+1 = β0 + β1ht + τ1htz
2
t

• GJR-GARCH : ht+1 = β0 + ht
[
β1 + τ1z

2
t + τ2I{zt<0}z

2
t

]
• NGARCH : ht+1 = β0 + β1ht + τ1ht (zt − τ2)2

• EGARCH : log ht+1 = β0 + β1 log ht + τ1zt + τ2

(
|zt| −

√
2
π

)
The first three models are linear models, whereas the fourth is a log-linear model. Unlike

the linear GARCH models, the log-linear GARCH model uses the standardized shock zt

instead of the nonstandard shock
√
htzt to drive the volatility process. It also imposes

fewer constraints on the parameters to guarantee a positive conditional variance. These

advantages come at the cost of a tendency to overreact to volatility shocks and a much more

complicated multi-period volatility forecast formula.

Following Duan (1995) and others, the risk neutral dynamics are linked to their physical

counterparts with a locally risk-neutral valuation relationship. Thus, the corresponding risk

neutral dynamics are

rt+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1

where z∗t follows a standard normal distribution. The variance equations for the different

models are as follows.

• Standard GARCH: ht+1 = β0 + β1ht + τ1ht (z∗t − λ)2
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• GJR-GARCH: ht+1 = β0 + ht

[
β1 + τ1(z

∗
t − λ)2 + τ2I{z∗t<λ}(z

∗
t − λ)2

]
• NGARCH: ht+1 = β0 + β1ht + τ1ht (z∗t − λ− τ2)

2

• EGARCH: log ht+1 = β0 + β1 log ht + τ1 (z∗t − λ) + τ2

(
|z∗t − λ| −

√
2
π

)
As all of these models are non-affine models4, and the traditional close form pricing formula

via Fourier inverse transformation is not available. Here, we follow Duan et al. (1999) and

price the European call options using an analytical approximation5. It is worth noting that

the EGARCH models are much slower than the linear GARCH models when the terms

needed for the approximation are calculated.

Heston-Nandi GARCH models

Unlike the GARCH models discussed in the previous section, the Heston-Nandi GARCH

(Heston and Nandi (2000)) is an affine model with an explicit moment generation function

that can be used to calculate close-form option prices. This feature makes it a popular

benchmark model in discrete time option pricing. The mean equation is

rt+1 = r +

(
λ− 1

2

)
ht+1 +

√
ht+1zt+1

where zt follows standard normal distribution. The parameter λ measures the required

return of an investor that is proportional to the conditional volatility. The variance equation

is specified as

ht+1 = β0 + β1ht + τ1

(
zt − τ2

√
ht

)2
The risk neutralization of this model can be done in two different ways. The first method

is Duan’s LRNVR (In this paper, we refer to the Heston-Nandi GARCH with LRNVR as

HNG.). The second method relies on the variance-dependent pricing kernel proposed by

Christoffersen et al. (2013). The latter method explicitly provides an additional parameter
4In an affine model the moment generation function E0(e

φXt) of the return process Xt = log(St/S0) is
an exponential linear function.

5The GARCH model can be viewed as a special case (τ2 = 0) of NGARCH/CJR-GARCH. The ap-
proximation formula can be adapted from the one for NGARCH/GJR-GARCH by using the constraint
τ2 = 0.
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in the pricing kernel to accommodate variance risk premium (In this paper, we refer to

the Heston-Nandi GARCH with a variance-dependent pricing kernel as HNGvd.). The

corresponding risk neutral dynamics are

HNG : rt+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1

HNGvd : rt+1 = r − 1

2
h∗t+1 +

√
h∗t+1z

∗
t+1

where z∗t follows a standard normal distribution. The variance equations are as follows:

• HNG: ht+1 = β0 + β1ht + τ1
(
z∗t − (τ2 + λ)

√
ht
)2

• HNGvd: h∗t+1 = β∗0 + β1h
∗
t + τ∗1

(
z∗t − τ∗2

√
h∗t
)2

where h∗t = ξ̃ht, β∗0 = ξ̃β0, τ∗1 = ξ̃2τ1, τ∗2 = 1/2 + (τ2 + λ − 1/2)/ξ̃ and ξ̃ = 1/(1 + 2ξτ1).

Parameter ξ is the free parameter in the variance-dependent pricing kernel.

As the model structures of HNGvd and HNG are the same under risk neutral dynam-

ics, the moment generation function provided in Heston and Nandi (2000) can be adapted

for both models. The European option prices can be calculated using the Fourier inverse

transformation.

Models with realized variance

Several models have been proposed for high frequency data-based volatility modeling. Within

the GARCH framework, the Realized GARCH (Hansen et al. (2012), Hansen and Huang

(2016)), MEM (Engle and Gallo (2006)), and HEAVY ( Shephard and Sheppard (2010))

are commonly used complete models that can jointly model returns and realized variance.

Reduced models such as HAR (Corsi (2009)) are receiving increasing attention. In this

study, we focus on three models that have been adapted to option pricing practice.

• Realized GARCH

The Realized GARCH model was proposed by Hansen et al. (2012) as an extension of

GARCH-X. Hansen and Huang (2016) introduced the realized exponential GARCH, which
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describes returns and realized variance joint dynamics as follows:

rt+1 = r + λ
√
ht+1 −

1

2
ht+1 +

√
ht+1zt+1

log ht+1 = ω + β log ht + τ1zt + τ2(z
2
t − 1) + γσut

log xt = ξ + φ log ht + d1zt + d2(z
2
t − 1) + σut

where zt and ut are independent standard normal random variables. The volatility-specific

shock ut enables the model to accommodate variance risk premium in addition to equity

premium. The last “measurement equation” links ut with the realized variance and makes

the simple ML estimator available.

Following Christoffersen et al. (2010) and others, we use the exponential affine stochastic

discount factor to transform the model into its risk neutral counterpart:

rt+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1

log ht+1 = ω∗ + β log ht + τ∗1 z
∗2
t + τ2(z

∗
t − 1) + γσu∗t

log xt = ξ∗ + φ log ht + d∗1z
∗
t + d2(z

∗2
t − 1) + σu∗t

where z∗t and u∗t are independent standard normal random variables. ω∗ = ω+γσχ+λτ2(λ−

1), ξ∗ = ξ + σχ + λd2(λ − 1), τ∗1 = τ1 − 2λτ2, and d∗1 = d1 − 2λd2. χ are the parameters

associated with the variance risk premium, which is introduced into the model via the

discount factor. As the Realized GARCH model is not an affine model, the conventional

close-form pricing formula is not available. Huang et al. (2017) provided an alternative

pricing method with an analytical approximation. The idea was to expand the distribution

of the cumulative return with normal distributions and analytical higher moments. See

Proposition 1 in their paper for the detailed pricing formula.

• GARV

Another complete model dedicated to price options under the GARCH framework is the Gen-

eralized Affine Realized Volatility (GARV) model proposed by Christoffersen et al. (2014).

Unlike the Realized GARCH model, the GARV model decomposes the variance into two

parts: the variance calculated via the daily return hRt+1 and the variance calculated through
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the realized variance hRVt+1. Each of the individual series follows a Heston-Nandi type of

innovation and a measurement equation is added to close the model:

rt+1 = r +

(
λ− 1

2

)
h̄t+1 +

√
h̄t+1zt+1

h̄t+1 = κhRt+1 + (1− κ)hRVt+1

hRt+1 = ω + βhRt + τ1

(
zt − τ2

√
h̄t

)2
hRVt+1 = ξ + φhRVt + d1

(
εt − d2

√
h̄t

)2
RVt = hRVt + α2

[
ε2t − 1− 2d2εt

√
h̄t

]
where (zt, εt) follows a standard bi-variate normal distribution with correlation ρ. We also

introduce γ = d1/α2. The risk neutral dynamics under the exponential affine stochastic

discount factor are

rt+1 = r − 1

2
h̄t+1 +

√
h̄t+1z

∗
t+1

h̄t+1 = κhRt+1 + (1− κ)hRVt+1

hRt+1 = ω1 + β1h
R
t + τ1

(
zt − τ∗2

√
h̄t

)2
hRVt+1 = ξ + φhRVt + d1

(
ε∗t − d∗2

√
h̄t

)2
RVt = hRVt + α2

[
ε∗2t − 1− 2d∗2ε

∗
t

√
h̄t

]
where (z∗t , ε

∗
t ) follows a standard bi-variate normal distribution with correlation ρ. τ∗2 =

τ2 + λ, and d∗2 = d2 − χ. χ is the parameter associated with the variance risk premium

that is introduced into the model via the discount factor. Due to the affine structure of the

GARV model, a close-form solution is available and provided in Christoffersen et al. (2014).

• LHARG

In addition to the GARCH-type models, the availability of high-frequency data and realized

measures have boosted the development of reduced form models such as the HAR model

(Corsi (2009)). In particular, the HAR model is adapted using Heston-Nandi type leverage

functions and a gamma distribution (LHARG) to price European call options. Majewski

et al. (2015) provided a general framework of option pricing with a LHARG model. In this
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study, we use an extended LHARG by adding quarterly and yearly data to better model

the long-memory feature of volatility. A similar extension is used in Huang et al. (2018)

for VIX futures pricing to improve LHARG’s performance in pricing long maturity futures.

The dynamics under physical measures are

Rt+1 = r + λRVt+1 −
1

2
RVt+1 +

√
RVt+1εt+1, εt+1 ∼ i.i.d N(0, 1)

RVt+1|Ft ∼ Γ(δ,Θ(RVt,Lt), θ)

and

Θ(RVt, `t) = d+βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + βqRV

(q)
t + βyRV

(y)
t + αd`t

We define the components as follows:

RV
(d)
t = RVt, RV

(w)
t = 1

4

∑4
i=1RVt−i, RV

(m)
t = 1

17

∑21
i=5RVt−i,

RV
(q)
t = 1

41

∑62
i=22RVt−i, RV

(y)
t = 1

189

∑251
i=63RVt−i,

and

`t = ε2t − 1− 2γεt
√
RVt

`t is the leverage term that describes the asymmetric reaction of volatility in response to

positive and negative shocks from returns. Following Huang et al. (2018), we add daily

leverage to keep the model more concise. Adding additional components does not change

the main results. The risk neutral dynamics under the exponential affine stochastic discount

factor is

Rt+1 = r − 1

2
RVt+1 +

√
RVt+1ε

∗
t+1, ε∗t+1 ∼ i.i.d N(0, 1)

RVt+1|Ft ∼ Γ(δ,Θ∗(RVt,L
∗
t ), θ∗)

and

Θ∗(RVt, `
∗
t ) = d∗+β∗dRV

(d)
t + β∗wRV

(w)
t + β∗mRV

(m)
t + β∗qRV

(q)
t + β∗yRV

(y)
t + α∗d`

∗
t
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The stared risk-neutral parameters are linked to the physical parameters as follows:

β∗d = ∆[βd + αd(2γλ+ λ2)], β∗j = ∆βj for j ∈ {w,m, q, y},

α∗d = ∆αd, d∗ = ∆d, θ∗ = ∆θ, γ∗ = γ + λ,

and

`
(d)
t = ε∗2t − 1− 2γ∗ε∗t

√
RVt

where ∆ = {1 + θ[(λ− 1/2)2/2− χ− 1/8]}−1/2. Again, χ is the parameter associated with

the variance risk premium. Majewski et al. (2015) provided the option pricing formula for

arbitrary lags, which can be easily adapted to our setting.

3 Estimation Method

In previous studies of option pricing, the parameters have been estimated using several

different methods. The most direct way to calibrate the parameters (often referred to as

the nonlinear least square (NLS) method) is to minimize the mean square error between

the model price and the corresponding market price or the Vega weighted pricing error6.

However, NLS tends to distort the model parameters to extreme values. To overcome this

drawback, recent studies have turned to the joint estimation method, which takes model’s

fit of physical dynamics into account. As the discrete time models under physical measures

can be estimated using the maximum likelihood method, the joint estimation under discrete

time models has been receiving increasing attention from researches (e.g., Christoffersen

et al. (2014), Huang et al. (2017)). In this study, we estimate the parameters using joint

estimations with corresponding log-likelihood functions.

Log-likelihood for underlying process

The log-likelihood for the underlying process measures a model’s ability to describe the

physical dynamics of the returns and realized measures (if applicable).
6According to the definition of Vega, this pricing error is an approximation of the error in the implied

volatility.
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• Leveraged GARCH models

`R = −T
2

log(2πht)−
1

2

{
T∑
t=1

(rt − r − λ
√
ht −

1

2
ht)

2/ht

}

• Linear affine GARCH models

`R = −T
2

log(2πht)−
1

2

{
T∑
t=1

(rt − r − (λ− 1

2
)ht)

2/ht

}

• Realized GARCH

`R = −T
2

log(2πht)−
1

2

{
T∑
t=1

(rt − r − (λ− 1

2
)ht)

2/ht

}

`RV = −T
2

log(2πσ2)− 1

2

{
T∑
t=1

(log xt − ξ − φ log ht − d1zt − d2(z2t − 1))/σ2

}

• GARV

As the exact likelihood function for the volatility shock in GARV is hard to obtain,

the QMLE method is applied by assuming a bivariate normal distribution of (zt, εt):

µt+1 =

 µRt+1

µRVt+1

 =

 r + (λ− 1
2)h̄t+1

hRVt+1

 , Σt+1 =

 h̄t+1 −2ρd2α2h̄t+1

−2ρd2α2h̄t+1 2α2
2(1 + 2d22h̄t+1)


and

`R,RV = −T log(2π)− T

2
log(|Σ|)−

T∑
t=2

(xt − µt)TΣ−1t (x− µt)
2

where xt = (rt, xt)
T .

• LHARG

`R = −T
2

log(2πRVt)−
1

2

{
T∑
t=1

(rt − r − (λ− 1

2
)RVt)

2/RVt

}

`RV = −
T∑
t=1

(RVt
θ

+ Θ(RVt−1,Lt−1)
)

+
T∑
t=1

log
( ∞∑
k=0

RV δ+k−1
t

θδ+kΓ(δ + k)

Θ(RVt−1,Lt−1)k

k!

)
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Log-likelihood for pricing error

In this study, the option pricing error is defined as the Vega weighted pricing error to mimic

the difference in the implied volatility:

ei =
OMod
i −OMkt

i

V egai

where OMod
i and OMkt

i are the model and market option price for option i, respectively.

The option pricing formula for the European options can be found in the following pa-

pers: Duan et al. (2006) for GARCH, EGARCH, NGARCH, and CJR-GARCH; Heston and

Nandi (2000) for HNG; Christoffersen et al. (2013) for HNGvd; Huang et al. (2017) for RG;

Christoffersen et al. (2014) for GARV, and Majewski et al. (2015) for LHARG.

We assume that the weighted pricing error follows the normal distribution N(0, σ2e), and

the corresponding log-likelihood function is

`o = −N
2

log(2πσ2e)−
1

2

{
N∑
t=1

(ei)
2/σ2e

}

.

Joint log-likelihood

The joint log-likelihood is constructed by adding the log-likelihood of the underlying and

pricing errors together:

` = `R,RV + `o

where `R,RV = `R + `RV for RG and LHARG and set `RV = 0 for models without realized

measures.

4 Empirical Results

4.1 The Dataset

The SSE 50 ETF option was launched on February 9, 2015 and experienced rapid growth in

the subsequent years. The daily trading volume and open interest increased nearly 70 fold

drom 2015 to 2018. Figure 1 provides an overview of the market. As a new derivative in an
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emerging market, it has several notable features.

[Insert figure 1 here]

During the first year of trading, the market experienced the bust of stock bubbles in

mid-2015, the restart of IPO in late-2015 and the week of shutdown mechanism in early-

2016. All of them created significant fluctuation in the market and we conduct our empirical

investigation with both full sample and post 2015 sub-sample.

The second feature is the limited number of contracts. The SSE 50 ETF options initially

had five strikes (1 ATM, 2 OTM, and 2 ITM), which had increased to nine strikes (1 ATM,

4 OTM, 4 ITM) by the beginning of 2018. This limitation makes the conventional option

pricing using only Wednesday data impractical for studies using China’s dataset. Therefore,

we use option prices from all of the available trading days.

The third feature is that the short sell cost implied by option prices are high in 2015

and decrease over time. Put-call parity is one of the simplest and best known no-arbitrage

relations. No deviations from no-arbitrage means that the put-call parity implied dividend

yield should be close to the actual dividend yield, and a relatively higher implied dividend

yield signifies short sale constraints on the underlying assets7. Following Ofek et al. (2004)

and Bilson et al. (2015), we derive the put-call parity implied dividend yield and compare it

with the actual dividend yield. Specifically, for each option pairs i with the same strike and

maturity on day t, we derive an implied dividend yield yi(t) (annualized) using the put-call

parity:

Ci(t)− Pi(t) = S(t)e−yi(t)T −Ke−rT

where Ci(t) and Pi(t) are the prices of a call and a put option price pairs with the same

maturity T and the same strike price K. r is the risk-free rate. There are Nt option pairs

on day t with the same strike and maturity. Figure 1(d) reports the daily average implied

dividend yield y(t) = 1
Nt

∑Nt
i=1 yi(t) and the historical average dividend yield. We can find

that implied dividend yields are higher than the actual value in most cases, especially in

the second half of 2015 due to the stock market crash that year. This finding is related to

the high short sell cost in China. The gap between the implied and actual dividend yield

decreases over time, indicating that the option market has become more efficient in recent
7The put-call parity implied dividend yield is a proxy for the actual borrow rate of the underlying asset.
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years. This finding suggests that conventional option pricing methods that only use call (or

put) option data give biased results. Therefore, we use both call and put option data.

Accordingly, we trim our raw dataset covering the 2015/02-2018/02 period with the

following procedures.

1. Options that do not satisfy the arbitrage restriction are dropped. As an option price

is adjusted when the dividend is paid (dividend protected), the SSE 50 ETF options

can be treated as European options without dividends 8. The arbitrage restrictions

are set as

C(t) ≥ max(0, S(t)−Ke−rT )

P (t) ≥ max(0,Ke−rT − S(t))

2. Options with zero trading volume are dropped.

3. Options with maturities shorter than 5 or longer than 90 are dropped. In our dataset,

options with maturities less than 90 days account for 92% of the total trading volume.

4. Options with low liquidity are dropped. That means, for every maturity on a given

day, we drop the options with trading volumes lower than the median volume of the

group.

The resulting dataset contains 12,281 option prices. Table 2 provides an overview of the

dataset with the number of prices and the average implied volatility. From Panel A, we find

that, unlike the U.S. market, the Chinese market has a relatively balanced volatility smile

rather than a volatility smirk. The balanced feature indicates relatively weaker effect of the

leverage effect on the model. Panel B shows a flat or even downward sloping volatility term

structure. Also, most of the maturities are 60 days or less, indicating a lower demand for

long-memory structures in the pricing model.

[Insert Table 2 here]
8For more information, please refer to http://english.sse.com.cn/products/derivative
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4.2 Estimated Parameters

Table 3 provides the parameter estimations for different models using the full sample from

February 2015 to February 2018. The first eight models are GARCH type models and share

the same notations, if applicable. The last LHARG model has a different set of parameters

and we indicate them accordingly.

[Insert Table 3 here]

Several commonly mentioned features can be found. 1) All of the models have a highly

persistent volatility process under both physical and risk neutral measures. 2) Most of the

models have a positive and significant equity premium parameter (λ). The models with

explicit volatility risk premium parameters (χ/ξ̃) indicate a higher risk neutral volatility

than their physical counterparts.

However, we also find an unconventional positive leverage effect (i.e., given the same

magnitude of shock, a positive shock induces higher volatility in the next period) for most

models, probably because of the leverage boom in early 2015 when return and volatility were

highly positively correlated. If we estimate parameters without the data from 2015, only

weak correlations are found in the GARCH models. Generally, the conventional leverage

effect is weak in the Chinese market.

4.3 In-sample Pricing Performance

Table 4 provides the in-sample pricing performance across different models. The performance

is evaluated by the mean square error of implied volatility (IVRMSE):

IV RMSE =

√√√√ 1

N

N∑
i=1

[
IVMod

i − IVMkt
i

]2 × 100

where IVMod
i and IVMkt

i are the implied volatilities calculated from the model price and

market price, respectively. Unlike the option price-based RMSE, IVRMSE is a standardized

pricing error, as it avoids the high weight assigned to high price options. Table 4 provides

the full summary of the sample pricing performance with decomposed details. Bold numbers

indicate the minimum IVRMSE within each row.

[Insert Table 4 here]

16



For the overall performance, the total IVRMSE shows that models with realized measures

generally perform better than those without realized measures. The GARV delivers the best

fit (with a 21% IVRMSE reduction compared to HNG), followed by LHARG and RGARCH.

The non-affine GARCH models (GARCH/GJR/NG/EG) are generally better than the affine

GARCH models (HNG/HNGvd). A similar pattern is documented in Christoffersen et al.

(2013). As the leverage effects are weak, there is no significant performance difference

between symmetric (GARCH) and asymmetric models (GJR/NG).

For the decomposed performance, we isolate the 2015 subsample from the dataset and

price it with parameters estimated from the full sample. The results clearly demonstrate

that in the first year of SSE 50ETF options the behavior was significantly different than in

the following year; the full sample parameters show extremely large IVRMSEs for the first

year, but they drop sharply when the first-year data is eliminated. GARV remains the best

model for all of the sub-cases and the log-linear models perform better when the volatility

level is high and the option is deep out-of-money.

As the last three models rely on realized measures, we also provide performance com-

parisons for a range of realized measures. Table 5 reports the IVRMSE for the three models

using different realized measures including the realized variance for different sampling fre-

quency (RV1min, RV5min, RV10min, and RV30min) from Andersen and Bollerslev (1998),

the two-scale realized variance (TSRV) from Zhang et al. (2005), the realized kernel (RK)

of Barndorff-Nielsen et al. (2008), and the bi-power variation (BPV) of Barndorff-Nielsen

(2004). The bold numbers indicate the minimum IVRMSE within each column. Interest-

ingly, unlike the results based on volatility forecasting, the complex realized measures do not

generally provide better option prices. Traditional realized variance with sampling intervals

as short as 10 min provide reasonability good performances.

[Insert Table 5 here]

We also provide Black-Scholes (BS) results with volatility calibrated from the full sample.

Given the dramatic changes in volatility levels between 2015 and 2018, it is not surprising

that the BS delivers the worst pricing performance.
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4.4 Out-of-sample Pricing Performance

To incorporate the realized measure, the number of parameters is significantly increased for

the LHARG/GARV/RGARCH models. It is important to check that the superior perfor-

mance of these models is not merely due to in-sample overfitting. In the literature, three

major out-of-sample evaluation procedures have been proposed. The first method estimates

the parameters using data from the first several years and then value option prices for the

following years (e.g., Christoffersen and Jacobs (2004), etc.). The second method uses a

rolling window framework in which the parameters are updated once in each time period

(e.g., Christoffersen and Diebold (2006)). The third method splits the sample into Wednes-

day (for parameter estimation) and Thursday (for pricing evaluation) sub-samples within

the same time period (e.g., Christoffersen et al. (2010)). For our study, as the Chinese data

covers a much shorter period and is more volatile than the U.S. data, we use the rolling

window as our primary method and splitting the sample as a robustness check9.

The out-of-sample pricing performance evaluation is based on a rolling window of 252

trading days, with the parameters updated on a monthly basis. We evaluate the out-of-

sample pricing errors from 2016/02 to 2018/02; the observations in from 2015/02 to 2016/01

are used as a pre-sample to determine the first parameter for the out-of-sample analysis. The

results are presented in Table 6 with the decomposed results related to different moneyness,

maturity, and VIX level.

[Insert Table 6 here]

Similar to the in-sample results, the models with realized measures have better out-of-

sample pricing performance. The GARV model still generates the smallest total pricing

error, but the decomposed results are mixed for the three models. The performance gain

of the leverage GARCH models over the standard GARCH model is not significantly large.

The HNGvd delivers results similar to the standard HNG model. In short, the results of the

rolling window method of examining the out-of-sample data suggest that the performance

gain of option pricing models based on realized measure are free from in-sample overfitting.

For cross validation method, we estimate the parameters using Monday/Wednesday/Friday

data from the 2016/02 to 2018/02 period. Keeping the parameters fixed, we value the Tues-
9Given the much shorter sample, the splitting method in this study estimate parameters using Mon-

day/Wednesday/Friday data and evaluate option prices using Tuesday/Thursday data. We use MWF/TTh
to represent this method.
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day/Thursday options within the same time span10. The results are presented in Table 7.

Most of the results are the same as when the rolling window method is used.

[Insert Table 7 here]

5 Conclusions

This study tests a variety of discrete-time option pricing models with the SSE 50 ETF

option data. We find that realized measure-based models have better in-sample and out-

of-sample pricing performance for every kind of option. Unlike the results for volatility

forecasting, complex realized measures do not provide better pricing results than simple

ones like the conventional realized variance. The leverage effect is weak in the Chinese

option market, which contradicts its documented effect in the U.S. market. The prices

from the first trading year behave differently than in subsequent years, possibly due to the

extreme market volatility and severe limited to arbitrage. This implies that it is necessary

to analyze the data from this year separately when pricing Chinese options.

There are several issues that should be addressed in future studies. The first is the

modeling of jumps in the underlying process. Christoffersen et al. (2012) highlighted the

importance of dynamic jump intensities in option pricing. It is natural to expect that such

a feature might also be important in the Chinese market. The second issue is the long-

memory feature and the impact of different components of volatility. Christoffersen et al.

(2008) provided a component GARCH model for option pricing. The last issue is the need for

comparisons of discrete time models and continuous time models, especially for continuous

time models with realized measures.
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Table 1: Summary of Competing Models

G GJR NG EG HNG HNGvd RG GARV LHARG

Linear X X X X X X X
Log-Linear X X

Affine X X X X
With RV X X X
With VRP X X X X

Close-form Pricing X X X X
# of Parameters 4 5 5 5 5 6 12 12 12

Table 2: Option Dataset Summary

2015/02-2016/01 2016/02-2018/02 2015/02-2018/02

Total 3520 8761 12281
(0.366) (0.162) (0.221)

Panel A: Partitioned by Moneyness
S/K<0.95 839 818 1657

(0.405) (0.203) (0.305)
0.95<S/K<1.05 2041 7162 9203

(0.343) (0.151) (0.194)
1.05<S/K 640 781 1421

(0.390) (0.219) (0.296)
Panel B: Partitioned by Maturity
DTM<30 1672 3326 4998

(0.374) (0.159) (0.231)
30<DTM<60 1507 3688 5195

(0.360) (0.164) (0.221)
60<DTM 341 1747 2088

(0.357) (0.164) (0.196)
Panel C: Partitioned by VIX Level

VIX<15 3620 3620
(0.121) (0.121)

15<VIX<30 503 4473 4976
(0.259) (0.173) (0.182)

30<VIX 3017 668 3685
(0.384) (0.308) (0.370)

Note: The number of options in each category is provided. The average implied volatility is in
parentheses.
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Table 5: Pricing Performance Using Different Realized Measures

LHARG GARV RGARCH

RV1min 5.8020 5.0863 5.6310

RV5min 5.7282 5.1600 5.5718

RV10min 5.9253 5.2245 5.5281

RV30min 5.9372 5.3567 5.5434

RK 5.9089 5.2841 5.6233

BV 5.8281 5.1562 5.5694

TSRV 5.9553 5.2847 5.6172

Note: This table reports the full sample pricing performances (IVRMSE) of three high frequency
data-based option pricing models (GARV/LHARG/RGARCH) using different realized measures.
We consider a variety of classes of estimators of asset price volatility, including the realized
variance (RV1min, RV5min, RV10min, and RV30min) in Andersen and Bollerslev (1998), the
two-scale realized variance (TSRV) in Zhang et al. (2005), the realized kernel (RK) in Barndorff-
Nielsen et al. (2008), and the bi-power variation (BPV) in Barndorff-Nielsen (2004), The bold
numbers are the minimum IVRMSE values in each column.
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