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1 Introduction

Imagine a sender (he) who can provide some information to influence the decision

making of a rational Bayesian receiver (she) who has a private source of information.

The sender only has limited knowledge about what the receiver privately knows and

wants to design a persuasion rule that is robust to this uncertainty. Can the sender

gain from persuasion? What is the optimal way to persuade?

The above question is relevant in many economic settings. For example, when

a bond rating agency chooses what information to disclose to investors about bond

issuers, he knows that investors may also have access to private information from

other channels, such as newspapers and the Internet. The agency’s knowledge about

the investors’ private information is limited in the sense that the agency knows the

possible channels from which the private information is generated, but does not know

from which channel a particular investor obtains her information. In another example,

when a school chooses what information to disclose on transcripts to prospective

employers about the ability of its students, it knows that employers may also obtain

private information from the studetns’ extracurricular activities. The school knows

the set of all possible extracurricular activities, but does not know which particular

extracurricular activity is observed by an employer.

Our model is built on Kamenica and Gentzkow (2011). There is a sender who

designs a disclosure rule to convey information about the state of the world, and a

receiver who takes an action that affects her and the sender’s payoffs. The sender and

receiver initially hold common prior beliefs about the state of the world. In addition,

we assume that the receiver also receives private information from her private source,

about which the sender has only limited knowledge. We model the receiver’s private

information source as an information structure and formulate the sender’s limited

knowledge about the receiver’s private information source as a belief-based collection

of information structures, which is the set of all possible information structures sat-

isfying that the receiver’s private belief, updated from the common prior and her

private signal drawn from any information structure, is contained in a certain con-

vex range ∆̂. The sender neither observes the receiver’s private signal nor is aware

of from which information structure it is generated, but only knows the range of

the receiver’s private beliefs ∆̂, and thinks that every information structure in this

belief-based collection is possibly the receiver’s private information structure.

We investigate how an ambiguity-averse sender with maxmin expected utility op-

timally designs his robust information disclosure rule. The maxmin expected utility
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criterion,1 which is perhaps the most commonly adopted model in previous studies of

models involving ambiguity and robustness concerns, simply requires that the sender

evaluates each information disclosure rule by the worst possible expected payoff gen-

erated by the receiver’s private information structure from the belief-based collection.

The optimal persuasion rule is chosen so that it maximizes this worst expected payoff.

Our first step is to reformulate the receiver’s private information structures and the

sender’s information design. For a fixed prior belief, Kamenica and Gentzkow (2011)

prove the equivalence between information structures and posterior belief distribu-

tions consistent with this prior belief. We follow this approach and reformulate the

sender’s uncertainty about the receiver’s private information structure as the sender’s

uncertainty about the distribution of the receiver’s private beliefs. Any belief-based

collection of information structures is equivalent to the collection of posterior belief

distributions whose mean is the common prior and whose support is contained in

some ∆̂. As for the sender’s information design, unlike Kamenica and Gentzkow

(2011), we find it more convenient to work directly with information structures than

posterior belief distributions. This is because in our model the sender cares about

not only the receiver’s posterior belief distribution updated from the common prior,

but also the posterior belief distributions updated from various private beliefs. We

use Blackwell’s standard information structures (Blackwell (1951, 1953)) to narrow

down the sender’s choice space. This allows us to easily write out, for each designed

information structure, the sender’s contingent payoff function — his expected payoff

from this information design as a function of the receiver’s private belief.

To characterize the sender’s optimal information design, we derive a novel con-

vexification result, which shows that the sender’s worst case expected payoff from

an information design simply equals the value of the largest convex function below

his contingent payoff function over ∆̂ evaluated at the common prior. Based on this

intermediate result, we study the sender’s optimal value of persuasion in two cases

according to the sender’s degree of ambiguity. One is full ambiguity, where the sender

thinks that every information structure that the receiver may have is possible; the

other is local ambiguity, where the sender thinks that the receiver’s private beliefs are

all close to the common prior.

In the full ambiguity case, similar to the findings in many papers with robustness

concerns (e.g., Garrett (2014) and Carroll (2015)), the sender’s optimal value can be

achieved by a very simple rule: fully revealing the states to the receiver is always

optimal for the sender. This is because the sender’s worst case expected payoff from

1See Gilboa and Schmeidler (1989) for an axiomatic representation of this preference.

3



any information design cannot be higher than his expected payoff when the receiver

fully observes the states, since the sender cannot change the receiver’s action in this

case. By fully revealing the states to the receiver, the sender can guarantee himself this

upper bound regardless of the receiver’s private information. Thus, full information

disclosure is optimal. Based on this, our next result then shows that the sender can

gain from persuasion no matter what the interior initial prior is if and only if there

exists at least one private belief such that full disclosure makes him strictly better off

than letting the receiver choose her default action. This is in contrast to the model

of Kamenica and Gentzkow (2011), as there is no gain from persuasion when doing

so makes the sender no better off than letting the receiver choose her default action.

In our framework with robustness concerns, the sender can still gain from persuasion

because doing so can avoid the possible unfavorable private belief induced by the

receiver’s private signal.

In the local ambiguity case, we obtain an intuitive continuity result by showing

that for generic payoffs, as the sender’s uncertainty about the receiver’s private in-

formation vanishes, the sender’s optimal value converges to his optimal value when

the receiver does not have private information.2 However, this convergence result is

not because the sender’s optimal persuasion rule is robust to small uncertainty. The

optimal persuasion rule when the receiver does not have private information (and

hence the receiver’s private belief is the same as the common prior) is generically not

robust. This is because some signals of that optimal persuasion rule usually make

the receiver indifferent between several actions when the receiver holds the common

prior. Even if the receiver’s private belief is only a small perturbation of the common

prior, the receiver’s behavior will change dramatically, possibly resulting in a much

lower payoff to the sender. Nevertheless, we construct information disclosure rules

that can guarantee the sender values arbitrarily close to his optimal value when the

receiver does not have private information, provided that the uncertainty is small.

Consequently, the sender can gain from persuasion in the face of local ambiguity if

he can do so when there is no ambiguity.

Finally, we provide a novel method to fully characterize the optimal persuasion

rule for various cases of sender’s ambiguity in the prosecutor-judge leading example

of Kamenica and Gentzkow (2011). In this example, there are two states, i = 1

and i = 2, and two actions, a = 1 and a = 2. The sender always prefers a =

2, while the receiver takes a = 2 only if her belief about state i = 2 is greater

than or equal to 1
2
. Because there are only two states, we can identify the sender’s

2For non-generic payoffs, this result does not hold. See Appendix B for a counterexample.
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ambiguity by an interval [α, β] containing the prior, which represents the range of the

receiver’s private beliefs on the state i = 2. Clearly, if α ≥ 1
2
, it is always optimal for

the sender not to reveal any information because the receiver will take the sender’s

preferred action by default regardless of her private signal. However, when α < 1
2
, the

characterization of the sender’s optimal persuasion rule becomes much more involved.

The key insight from our characterization is that the sender’s optimal value from

persuasion is always achieved by a linear-contingent-payoff information structure,

i.e., an information structure under which the sender’s contingent payoff function

over [α, β] takes the form max{0, `} for some linear function `. By choosing a linear-

contingent-payoff information structure, the sender fully insures himself against any

uncertainty about the receiver’s private information structure, because the sender’s

worst case expected payoff from such contingent payoff function is simply the function

itself as implied by our convexification result. We then identify a cutoff belief between

α and β. If the common prior is lower than this cutoff, the sender’s optimal persuasion

rule coincides with his optimal rule in Kamenica and Gentzkow (2011) with prior α. If

the common prior is above this cutoff, his optimal rule is a different linear-contingent-

payoff information structure that would give up persuasion when the receiver’s private

belief is low in exchange for a higher chance of persuasion when the receiver’s private

belief is high.

1.1 Related Literature

Our Bayesian persuasion model is a variation of Kamenica and Gentzkow (2011), with

the new ingredient that the receiver is privately informed and the sender only has

limited knowledge about the receiver’s private information source. We study how a

sender optimally reveals information that is robust to the receiver’s private informa-

tion. Bayesian persuasion of a privately informed receiver has been studied in Rayo

and Segal (2010), Kamenica and Gentzkow (2011), Kolotilin et al. (2016), Kolotilin

(forthcoming) and Guo and Shmaya (2017).3 These papers all assume that the dis-

tribution of the receiver’s private information is common knowledge as in the usual

3Many other papers have studied Bayesian persuasion problems in various contexts. For ex-

ample, Gill and Sgroi (2012), Perez-Richet (2014) and Hedlund (2017) study Bayesian persuasion

with a privately informed sender; Gentzkow and Kamenica (2014) consider persuasion with costly

signals; Alonso and Câmara (2016) explore a Bayesian persuasion problem without a common prior;

Gentzkow and Kamenica (2017a) and Li and Norman (2017) analyze competition in Bayesian per-

suasion; and Gentzkow and Kamenica (2017b) investigate endogenous information acquisition of

information in a Bayesian persuasion environment; to name a few.
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mechanism design literature, but we consider the environment in which the sender

thinks many distributions are possible. While Rayo and Segal (2010), Kolotilin et

al. (2016), Kolotilin (forthcoming) and Guo and Shmaya (2017) model the receiver’s

private information as her private preference and the last three also consider private

persuasion (as called by Kolotilin et al. (2016)), our model is closest to Section VI.A

of Kamenica and Gentzkow (2011). We model the receiver’s private information as

her private belief, and focus on public persuasion in which the sender designs a single

information disclosure rule for all receiver types. Because the sender in our model is

uncertain about the receiver’s private information source, he cannot simply form an

expectation of the receiver’s private beliefs by “integrating over the receiver’s private

signal,” as suggested in Section VI.A of Kamenica and Gentzkow (2011). Conse-

quently, the standard concavification approach of Kamenica and Gentzkow (2011)

does not apply in our model. Instead, we rely on a new convexification approach to

derive our characterizations (see Lemma 4).

Our paper is also related to the growing literature on robust mechanism design un-

der ambiguity aversion. The literature has studied various contexts, such as auction

design, bilateral trade, monopoly pricing, and moral hazard.4 To our best knowledge,

our paper is the first to investigate robust Bayesian persuasion of a privately informed

receiver.5 Moreover, in the previous literature, the principal is completely uncertain

about the distributions or only knows some moments of the distributions (e.g., Car-

rasco et al. (2017)). In our setup, the principal (the sender) not only knows the mean

of the distributions, but also may have further knowledge about the support of the

distributions. We believe that the general method developed in this paper can also

be applied to study the robust Bayesian persuasion of a privately informed receiver

4An incomplete list of these studies includes Bergemann and Schlag (2008), Bergemann and

Schlag (2011) and Carrasco et al. (2017), who study monopoly pricing when the monopolist only

has limited knowledge about the distribution of the buyer’s valuation; Garrett (2014) analyzes a

model of cost-based procurement where the seller is uncertain about the agent’s effort cost function;

Carroll (2015) considers a principal-agent model in which the principal is uncertain about what

the agent can and cannot do; Bose et al. (2006), Bodoh-Creed (2012) and Bose and Renou (2014)

investigate auction design problems in which each bidder is uncertain about other bidders’ valuation

distributions; and Wolitzky (2016) studies efficiency in a bilateral trade model in which the seller

and buyer only know the mean of each other’s valuations. More recently, Du (2017) and Bergemann

et al. (2016) study robust common value auction design in which the seller is uncertain about the

bidders’ information structures.
5Following Bose and Renou (2014), Li and Li (2017) consider ambiguous persuasion where the

sender can send a signal with multiple likelihood distributions. But this possibility is not allowed in

our model.
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in other frameworks, such as Rayo and Segal (2010) and Kolotilin et al. (2016), and

other robust mechanism design issues in similar contexts.

2 Model

2.1 Basic setup and notation

Let Ω = {1, 2, . . . , N} be the set of states of the world. There is a sender and a

receiver. The sender designs information and the receiver takes an action a from a

finite set A. The sender’s ex post payoff is v : A × Ω → R and the receiver’s is

u : A × Ω → R. At the beginning of the game, the sender and receiver share a

common prior π ∈ ∆(Ω) = ∆N−1.6

The receiver can receive private information from her private information source.

We model sender’s information design and the receiver’s private information source

by information structures. An information structure (equivalently, a statistical exper-

iment) I = (S, µ1, · · · , µN) consists of a Borel measurable set S of signals and condi-

tional distributions of signals: µi ∈ ∆(S) for each i ∈ Ω. For each I = (S, µ1, . . . , µN),

let µ0 ≡ (
∑

i µi)/N be the “average distribution” of signals. Given an initial belief p ∈
∆N−1 over the states of the world and an information structure I = (S, µ1, . . . , µN),

each signal realization s ∈ S leads to an updated belief via Bayes’ rule:

qI(p, s) ≡
( p1f1(s)∑

i pifi(s)
, . . . ,

pNfN(s)∑
i pifi(s)

)
∈ ∆N−1, (1)

where fi : S → R is the Radon-Nikodym derivative (or density) of µi with respect to

µ0. Moreover, for each information structure I = (S, µ1, . . . , µN) and an initial belief

p ∈ ∆N−1, we write µp ≡
∑

i piµi as the unconditional distribution of signals and

µ̂p ≡ µp ◦ qI(p, ·)−1 as the unconditional distribution of updated beliefs.7 Finally, let

I denote the set of all information structures.

2.2 Modeling the sender’s ambiguity

Suppose the receiver’s private information structure is Ir = (Sr, ν1, . . . , νN). After ob-

serving a realization sr ∈ Sr, the receiver’s updated private belief becomes qIr(π, sr).

6If X is a Borel measurable set X, ∆(X) denotes the set of all probability measures over X.
7Given two measurable sets X and Y , a measurable function g : X → Y and a measurable ν over

X, µ ◦ f−1 denotes the push-forward measure of µ, i.e. µ ◦ f−1(Y ′) ≡ µ({x ∈ X|f(x) ∈ Y ′}) for all

measurable Y ′ ⊆ Y .
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If the sender knows Ir, he can form an expectation about the distribution of the

receiver’s private beliefs even if he cannot observe the realized signal, as discussed

in Kamenica and Gentzkow (2011). However, we assume that when designing infor-

mation, the sender neither observes the receiver’s signal nor is aware of her private

information structure. The only knowledge that the sender has is that the receiver’s

private information structure belongs to a certain collection of information structures

Î ⊆ I. Ambiguity arises as the sender does not even know the receiver’s private infor-

mation structure, and hence Î represents the degree of ambiguity faced by the sender.

We assume that the sender’s knowledge is correct in the sense that the receiver’s true

private information structure is indeed contained in Î. Thus, this rules out the sit-

uations where the sender completely misspecifies the receiver’s private information

structure.8

There are potentially many different ways to model the sender’s ambiguity, Î. In

this paper, we will focus on one particular approach, which directly links Î to the set

of the receiver’s private beliefs. We say a collection Î ⊆ I of information structures

is belief based if there exists a nonempty, convex and compact subset ∆̂ ⊆ ∆N−1 such

that π ∈ ∆̂ and9

Î =
{
I ∈ I

∣∣supp(µ̂π) ⊆ ∆̂}.

In this case, we explicitly write Î as Î(∆̂, π). In words, Î(∆̂, π) contains all the

information structures whose induced private beliefs are all contained in ∆̂, given the

common prior π. Thus, a belief-based collection of information structures captures

the idea that the sender does not know the receiver’s private information structure

but believes that after observing her private signal, the receiver forms a private belief

that is in a certain range no matter what private information structure the receiver

actually has and what signal realization she observes.

The following two examples are two extreme cases of belief-based collections of

information structures.

Example 1. ∆̂ = {π}. This corresponds to the situation where the sender knows

that the receiver’s private belief after observing her private signal is always the com-

mon prior π regardless of the signal realization. Thus, Î(∆̂, π) contains only null

information structures, i.e., information structures whose signals are completely un-

8See, for example, Esponda and Pouzo (2016a,b) for recent discussions of solution concepts under

model misspecification.
9The requirement that π ∈ ∆̂ is innocuous because otherwise Î(∆̂, π) is an empty set. See the

discussion before Lemma 1.
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informative. In this case, there is in fact no ambiguity and our model degenerates to

that in Kamenica and Gentzkow (2011).

Example 2. ∆̂ = ∆N−1. This corresponds to the situation where the sender has no

knowledge at all about the receiver’s private information structure and thinks that the

receiver’s private signal can lead to any potential private belief. Thus, Î(∆̂, π) = I.

In this case, there is full ambiguity and the sender thinks that every information

structure that the receiver may have is possible.

The following is an example in which the sender has partial knowledge about the

information structure from which the receiver’s signal is generated.

Example 3. ∆̂ = {q ∈ ∆N−1|qi ≥ αi for i = 1, . . . , N} for some α1, . . . , αN > 0 and∑
i αi < 1. That is, although the sender is uncertain about what private information

structure the receiver has, he knows that the receiver’s private signal always leads to

an interior private belief that is bounded away from the boundary of ∆N−1. In other

words, the sender is sure that the receiver cannot receive very precise information

about the states. In particular, when N = 2, this corresponds to the situation where

the sender believes that the receiver’s private information has bounded likelihood

ratios, i.e.,

Î(∆̂, π) =

{
I ∈ I

∣∣∣∣ π1α2

π2(1− α2)
≤ f2(s)

f1(s)
≤ (1− α1)π1

π2α1

, ∀s ∈ S
}
.

2.3 Sender’s information design problem

Aside from the receiver’s private information, the sender can design an information

structure to supply supplemental information to the receiver. We assume throughout

this paper that the receiver’s private information and the sender’s information are

conditionally (on states) independent (as in Kamenica and Gentzkow (2011) and

Bergemann et al. (forthcoming)).

The timing of the game is as follows. The sender first chooses an information

structure and commits himself to revealing whatever signal he observes; the receiver

then observes her private signal and the sender’s signal, and makes an action choice.

For any q ∈ ∆N−1, let a[q] = arg maxa∈A
∑

i qiu(a, i) be the receiver’s optimal action

choice if her posterior belief after observing these two signals is q. Following Kamenica

and Gentzkow (2011), we consider the sender-preferred subgame perfect equilibrium:

if the receiver is indifferent between some actions at a given belief, she takes an action

that maximizes the sender’s expected payoff under this belief.
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Suppose the receiver’s private information structure is Ir = (Sr, ν1, . . . , νN) and

the sender’s information structure is Is = (Ss, µ1, . . . , µN). Because the two informa-

tion structures are independent, the receiver’s posterior belief after observing a signal

sr from Ir and a signal ss from Is becomes qIs(qIr(π, sr), ss) ∈ ∆N−1, and thus she

optimally chooses a
[
qIs(qIr(π, sr), ss)

]
∈ A. Therefore, if Ir was publicly known, the

sender’s ex-ante expected payoff from designing information structure Is would be∑
i

πi

∫
Sr

(∫
Ss

v
(
a
[
qIs(qIr(π, sr), ss)

]
, i
)
µi(dss)

)
νi(dsr)

=

∫
Sr

∑
i

πi
dνi
dν0

×
(∫

Ss

v
(
a
[
qIs(qIr(π, sr), ss)

]
, i
)
µi(dss)

)
ν0(dsr)

=

∫
Sr

(∑
j

πj
dνi
dν0

)
×
(∑

i

qIri (π, sr)

∫
Ss

v
(
a
[
qIs(qIr(π, sr), ss)

]
, i
)
µi(dss)

)
ν0(dsr)

=

∫
Sr

∑
i

qIri (π, sr)
(∫

Ss

v
(
a
[
qIs(qIr(π, sr), ss)

]
, i
)
µi(dss)

)
νπ(dsr), (2)

where, ν0 ≡ (
∑

i νi)/N is the average distribution of the receiver’s private signals,

and νπ ≡
∑

i πiνi is the unconditional distribution of the receiver’s private signals

given prior π. The second equality of the above expression comes from (1).

However, the receiver’s information structure is private and the sender is uncertain

about it. The sender only knows that the receiver’s private information structure is

one of those in Î(∆̂, π). Following the standard maxmin expected utility function

assumption in the ambiguity aversion literature (e.g., Gilboa and Schmeidler (1989),

Garrett (2014), Carroll (2015)), we assume that the sender evaluates an information

structure Is by its worst case expected payoff. When the sender designs Is, it is the

worst case expected payoff that he seeks to maximize. Formally, for each Is ∈ I, let

V Is(∆̂, π) ≡ 1

N
inf

Ir∈Î(∆̂,π)

∫
Sr

(∑
i

qIri (π, sr)

∫
Ss

v
(
a
[
qIs(qIr(π, sr), ss)

]
, i
)
µi(dss)

)
νπ(dsr)

(3)

be the sender’s (normalized) worst case expected payoff if he designs information

structure Is, where 1/N is a normalization. The sender’s problem can then be suc-

cinctly written as

V (∆̂, π) ≡ max
Is∈I

V Is(∆̂, π). (4)

3 Simplifying the sender’s problem

The sender’s problem in (4) is in general not easy to work with because the space

I (and hence Î(∆̂, π)) is very large and abstract. In this section, we try to simplify
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it by reformulating the receiver’s private information structures and the sender’s

information design.

In considering the sender’s information design problem in their model, Kamenica

and Gentzkow (2011) prove that the sender’s choice of information structure is equiv-

alent to choosing a distribution over posterior beliefs whose mean is the common

prior, because every information structure induces a posterior belief distribution with

the mean being the common prior and vice versa. Here, we apply this result to the

reformulation of the receiver’s private information structures. We show in Section 3.1

that the sender’s uncertainty about the receiver’s private information structure can

be equivalently modeled as the sender’s uncertainty about the distribution of the re-

ceiver’s private beliefs. The sender’s information design is more subtle in our model,

because the receiver may have private beliefs that are different from the common

prior and consequently the sender cares about posterior belief distributions induced

by not only the common prior, but also various private beliefs. As a result, we find it

easier to work directly with information structures, and we use Blackwell’s standard

information structure (Blackwell (1951, 1953)) to narrow down the choice space of

the sender.10

3.1 Receiver’s private belief distributions

For any receiver’s private information structure Ir = (Sr, ν1, . . . , νN) ∈ Î(∆̂, π), recall

that ν̂π is the unconditional distribution of the receiver’s private beliefs given prior

π. Using this notation, we can rewrite the sender’s expected payoff from information

structures Ir and Is in (2) as∫
∆N−1

(∑
i

pi

∫
Ss

v
(
a
[
qIs(p, ss)

]
, i
)
µi(dss)

)
ν̂π(dp). (5)

From (5), it is obvious that each receiver’s private information structure Ir ∈ Î(∆̂, π)

affects the sender’s expected payoff only through ν̂π. Since Ir ∈ Î(∆̂, π), we know

supp(ν̂π) ⊆ ∆̂ by definition. Moreover, because ν̂π is the distribution of posteriors

updated from prior π via Bayes’ rule, it is a standard result that the mean of ν̂π is

simply π, i.e.,
∫

∆N−1 pν̂
π(dp) = π. The following lemma, which is a simple extension

of Proposition 1 in Kamenica and Gentzkow (2011), states that the converse is also

10Another equivalent approach is to model the sender’s choice of information structure as choosing

a posterior belief distribution given the common prior and, for the same reason explained above,

directly work with information structures for the receiver’s private information structures. But we

find that this formulation is not very helpful.
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true: the support and mean restrictions are the only restrictions on the set of all

distributions of posterior beliefs that can be induced by an information structure in

Î(∆̂, π).

Lemma 1. Fix ∆̂ and π ∈ ∆̂. For any probability distribution ν ∈ ∆(∆N−1) with

supp(ν) ⊆ ∆̂ and
∫

∆N−1 pν(dp) = π, there exists an information structure I ∈ Î(∆̂, π)

such that ν̂π = ν.

For any ∆̂ and π ∈ ∆̂, let G(∆̂, π) be the set of all probability distributions over

∆N−1 whose support is contained in ∆̂ and whose mean is π. Formally

G(∆̂, π) ≡ {ν ∈ ∆(∆N−1)|supp(ν) ⊆ ∆̂ and

∫
∆N−1

pν(dp) = π}.

Lemma 1 then states that G(∆̂, π) = {ν̂π|I ∈ Î(∆̂, π)}. Therefore, plugging ex-

pression (5) into (3), we can rewrite the sender’s worst case expected payoff from

information structure Is as

V Is(∆̂, π) =
1

N
inf

Ir∈Î(∆̂,π)

∫
∆N−1

(∑
i

pi

∫
Ss

v
(
a
[
qIs(p, ss)

]
, i
)
µi(dss)

)
ν̂π(dp)

=
1

N
inf

ν∈{ν̂π |Ir∈Î(∆̂,π)}

∫
∆N−1

(∑
i

pi

∫
Ss

v
(
a
[
qIs(p, ss)

]
, i
)
µi(dss)

)
ν(dp)

=
1

N
inf

ν∈G(∆̂,π)

∫
∆N−1

(∑
i

pi

∫
Ss

v
(
a
[
qIs(p, ss)

]
, i
)
µi(dss)

)
ν(dp). (6)

3.2 Sender’s standard information structure

The sender’s information design problem is still not easy to work with because the set

of all information structures is very rich. We now simplify the sender’s information

design problem by narrowing down the sender’s choice space. We say two information

structures I = (S, µ1, . . . , µN) and I ′ = (S ′, µ′1, . . . , µ
′
N) are equivalent if these two

induce the same conditional distributions of posterior beliefs for every prior, i.e., for

all p ∈ ∆N−1, µi ◦ qI(p, ·)−1 = µ′i ◦ qI
′
(p, ·)−1 for all i = 1, . . . , N .

Clearly, if two information structures are equivalent, they always induce the same

unconditional distribution of posterior beliefs for any prior. Thus, from the sender’s

point of view, if two information structures are equivalent, then they always lead to

identical receiver’s posterior belief distributions no matter what the receiver’s private

belief is. This in turn implies that although the sender does not know the distribution

of the receiver’s private belief, two equivalent information structures will always yield

the same expected payoff to the sender. This simple observation is summarized in

the following lemma.
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Lemma 2. If Is and I ′s are equivalent, then V Is(∆̂, π) = V I′s(∆̂, π) for all ∆̂ and π.

In view of Lemma 2, we only need to focus on one representative for each class

of equivalent information structures. Conceptually, the choice of the representative

can be arbitrary. But we find Blackwell’s standard information structures to be

particularly easy to work with as representatives.

Definition 1 (Blackwell (1951)). An information structure I = (S, µ1, . . . , µN) is a

standard information structure if S = ∆N−1, and for all i = 1, . . . , N ,

dµi
dµ0

(s) = Nsi, µ0 − a.s. (7)

Standard information structures all use ∆N−1, the set of all beliefs, as their signal

space. Moreover, if I = (S, µ1, . . . , µN) is a standard information structure, then

condition (7) implies that the posterior belief updated via Bayes’ rule from prior

p ∈ ∆N−1 and signal s ∈ S is

qI(p, s) ≡
( p1s1∑

i pisi
, . . . ,

pNsN∑
i pisi

)
∈ ∆N−1. (8)

Notice that the posterior belief for a given prior p ∈ ∆N−1 and a signal s ∈ ∆N−1 is

the same for all standard information structures because the right hand side of (8) is

independent of I. For this reason, throughout the paper, we suppress the superscript

I and simply write q(r, s) as the posterior belief updated from a standard information

structure.

The following result, due to Blackwell (1951) (see also Blackwell (1953)), states

that the collection of all standard information structures is rich enough to “represent”

all information structures.11

Lemma 3 (Blackwell (1951, 1953)). Every information structure I ∈ I is equivalent

to some standard information structure.12

Consider a standard information structure I. It is immediate from condition (7)

that 1 = µi(∆
N−1) =

∫
∆N−1 Nsiµ0(ds) or equivalently

∫
∆N−1 siµ0(ds) = 1/N for

all i = 1, . . . , N . That is, the “average signal” of a standard information structure

11Smith and Sørensen (2000) also used this fact to model the agents’ private signals in their model

of observational learning. See their Appendix A.
12The notion of equivalent information structures in Blackwell (1951) is different from the one

we give in the current paper. But it is easy to see that these two notions are equivalent. In the

Appendix, we briefly discuss how Lemma 3 can be verified directly.
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given equal prior is (1/N, . . . , 1/N).13 On the other hand, every probability measure

µ ∈ ∆(∆N−1) with mean (1/N, . . . , 1/N) induces a standard information structure.

To see this, define µi according to the Radon-Nikodym derivative dµi
dµ

(s) = Nsi for

s ∈ ∆N−1. Then it is straightforward to verify that (∆N−1, µ1, . . . , µN) is indeed a

standard information structure and µ = (
∑

i µi)/N . This suggests that the set of all

standard information structures can be characterized by

F ≡
{
µ ∈ ∆(∆N−1)

∣∣∣ ∫
∆N−1

siµ(ds) = 1/N for i = 1, . . . , N
}
.

For this reason, with a slight abuse of notation, we also call a measure µ ∈ F a

standard information structure.

Consider a standard information structure µ ∈ F . The sender’s payoff in (6) from

µ can then be written as

V µ(∆̂, π) =
1

N
inf

ν∈G(∆̂,π)

∫
∆N−1

(∑
i

pi

∫
∆N−1

v
(
a
[
q(p, s)

]
, i
)
µi(ds)

)
ν(dp)

= inf
ν∈G(∆̂,π)

∫
∆N−1

(∫
∆N−1

[∑
i

pisiv
(
a
[
q(p, s)

]
, i
)]
µ(ds)

)
ν(dp),

where the second equality comes from condition (7). Moreover, according to Lemmas

2 and 3, it is without loss of generality to restrict attention to standard information

structures in the sender’s problem. Therefore, the sender’s information design prob-

lem in (4) can be reformulated as a problem of choosing a probability measure over

∆N−1 with the constraint that its mean is (1/N, . . . , 1/N):

V (∆̂, π) = max
µ∈F

inf
ν∈G(∆̂,π)

∫
∆N−1

(∫
∆N−1

∑
i

pisiv
(
a
[
q(p, s)

]
, i)µ(ds)

)
ν(dp). (9)

3.3 Convexification

For each standard information structure µ ∈ F , define the sender’s contingent payoff

function φµ : ∆N−1 → R as

φµ(p) ≡
∫

∆N−1

∑
i

pisiv
(
a
[
q(p, s)

]
, i)µ(ds), ∀p ∈ ∆N−1. (10)

13This can also be understood from the perspective of the distribution of posterior beliefs with

equal prior. From condition (7), we know q(p, s) = s if p = (1/N, . . . , 1/N). Therefore, the fact that∫
∆N−1 siµ0(ds) = 1/N for all i = 1, . . . , N simply states that the mean of the posterior distribution

is equal to the prior. From this point of view, choosing a standard information structure is simply

choosing a posterior belief distribution. This is in the same spirit as Kamenica and Gentzkow (2011)

with the difference that we directly focus on posterior belief distributions consistent with uniform

prior instead of π.
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Observe that φµ(p) is the sender’s expected payoff from information structure µ con-

tingent on the receiver’s private belief being p. For each ∆̂, let φµ|∆̂ : ∆̂ → R be

the function φµ restricted to the domain ∆̂. Define the convexification of φµ on the

domain ∆̂, denoted co∆̂φ
µ : ∆̂→ R, as the largest convex function on ∆̂ below φµ|∆̂.

Formally, co∆̂φ
µ is the pointwise supremum of all convex functions on ∆̂ that are

below φµ|∆̂, i.e.,

co∆̂φ
µ(p) ≡ sup

convex f :∆̂→R
f≤φµ|

∆̂

f(p), ∀p ∈ ∆̂.

Figure 1 provides an illustration of convexification for a one-dimensional function.

It is worth emphasizing that the value of the convexification in general depends on

its domain ∆̂. Specifically, the convexification of φµ on a domain ∆̂ is in general

different from the convexification of φµ on ∆N−1 restricted to ∆̂. The dotted blue

line in Figure 1 is the convexification over the whole domain [0, 1], while the solid

blue line is the convexification over the interval [α, β]. Obviously, these two are quite

different.

0
p

1α β

Figure 1: An illustration of convexification on different domains

The following result provides a characterization of the sender’s worst case expected

payoff from an information structure µ ∈ F using the above notion of convexification.

Lemma 4. For any ∆̂, π ∈ ∆̂ and µ ∈ F ,

V µ(∆̂, π) = co∆̂φ
µ(π).

Lemma 4 says that the worst case expected payoff to the sender from an informa-

tion structure µ is equal to the value of the convexification of φµ over ∆̂ at the initial

prior π. This is analogous but opposite to the concavification result in Kamenica and
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Gentzkow (2011). (See Corollary 2 in Kamenica and Gentzkow (2011) and Aumann

et al. (1995).) To see why this is true, recall that φµ(p) is the sender’s expected

payoff if the receiver’s private belief is p. If the receiver’s private belief is distributed

according to some distribution (λ1 ◦ p1, . . . , λK ◦ pK) where K ≥ 1, λ1, . . . , λK ≥ 0,∑
k λ

k = 1, p1, . . . , pK ∈ ∆̂ and
∑

k λ
kpk = π, then the sender’s expected value is∑

k λ
kφµ(pk). Because the sender does not know the exact distribution of the re-

ceiver’s private belief, his worst case payoff is the lowest expected payoff over all such

possible distributions of the receiver’s private belief. As can be seen from the illus-

tration in Figure 1, such lowest expected payoff precisely corresponds to the value of

the convexification of φµ over ∆̂ at π. The restriction of the domain to ∆̂ reflects

our assumption that the sender knows that the receiver’s private belief is bounded in

such set.

4 Value of persuasion

In this section, we study the sender’s value of information design. Following Kamenica

and Gentzkow (2011), we say that the sender can benefit from persuasion for the

persuasion problem (∆̂, π) if the sender can get a strictly higher payoff by designing

an information structure than not supplying any information. Formally, define φ0 :

∆N−1 → R as

φ0(p) ≡
∑
i

piv
(
a[p], i

)
, ∀p ∈ ∆N−1.

Notice that φ0(p) is the sender’s expected payoff if he does not supply any information

and if the receiver’s private belief is p. Similarly as before, for any ∆̂, let co∆̂φ
0 :

∆̂ → R be the convexification of φ0 over ∆̂. By Lemma 4, the sender can benefit

from persuasion for the persuasion problem (∆̂, π) if and only if there exists µ ∈ F
such that V µ(∆̂, π) > co∆̂φ

0(π).

4.1 Full ambiguity

When ∆̂ = ∆N−1, the sender is completely uncertain about the receiver’s private

belief distribution because he thinks that the receiver can have any kind of private

information structure. Among all possible private information structures is the one

that perfectly reveals the underlying states to the receiver. If the receiver is indeed

endowed with this information structure, it is obvious that no matter what informa-

tion structure the sender chooses, he cannot change the receiver’s behavior at all.
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Consequently, because the sender evaluates each information structure by the worst

case expected payoff and he thinks it is possible that the receiver’s private informa-

tion structure perfectly reveals the states, the sender’s payoff from any information

design cannot be higher than his expected payoff when the receiver perfectly observes

the states. On the other hand, if the sender designs an information structure that

perfectly reveals the underlying states, then the receiver will simply ignore her own

private information and choose accordingly after knowing the states. This in turn im-

plies that even if the sender does not know the true private information structure that

the receiver has, the sender can always guarantee himself an expected payoff when

the receiver perfectly observes the states, by fully revealing the underlying states to

the receiver. As a result of the above analysis, if the sender has full ambiguity, fully

revealing the states to the receiver is always optimal for the sender for any prior π.

This is summarized in the following proposition. For each i = 1, . . . , N , let γi ∈ ∆N−1

be the belief that places probability 1 over states i.

Proposition 1. If ∆̂ = ∆N−1, then full information disclosure is optimal for any

prior π ∈ ∆N−1. In this case, the sender’s value is

V (∆̂, π) =
N∑
i=1

πiv
(
a[γi], i

)
, ∀π ∈ ∆N−1. (11)

Another and perhaps a more enlightening way to understand Proposition 1 is

through Lemma 4. For any persuasion problem (∆̂, π), if i) the sender’s expected

payoff when the receiver’s private belief is an extreme point of ∆̂ is independent of

his information design, and ii) there exists an information structure such that the

sender’s expected payoff from this information structure is a linear function of the

receiver’s private belief all over ∆̂, then Lemma 4 directly implies that this information

structure is optimal for the sender. Proposition 1 is a direct implication of this

observation because the sender’s expected payoff is independent of his information

design when the receiver knows the underlying state and the sender’s expected payoff

is indeed a linear function in the receiver’s private belief all over ∆N−1 (see (11))

when he discloses all information.

Although full information disclosure is optimal by Proposition 1, it may not be

the unique optimal information structure for the sender. In particular, it is possible

that the sender can get the same payoff from not supplying any information. This

is the case, for example, if the receiver always chooses the sender’s least-preferred

action after observing the underlying state, i.e., v
(
a[γi], i

)
= mina∈A v

(
a, i
)

for all

i = 1, . . . , N . Thus, Proposition 1 alone does not tell us whether and when the
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sender can benefit from persuasion. The next proposition provides a complete answer

to these questions.

Proposition 2. Let ∆̂ = ∆N−1. Then the followings statements are equivalent:

(i) There exists π ∈ ∆N−1, such that φ0(π) <
∑

i πiv
(
a[γi], i

)
.

(ii) The sender benefits from persuasion for some π ∈ ∆N−1.

(iii) The sender benefits from persuasion for all π ∈ int∆N−1 where int∆N−1 is the

set of all interior points of ∆N−1.14

This proposition provides a full characterization of when the sender can benefit

from fully revealing the states to the receiver if the sender has full ambiguity. Recall

that φ0(π) =
∑

i πiv
(
a[π], i

)
is the sender’s expected payoff from the receiver choosing

her default action before observing any additional information. Proposition 2 thus,

in short, tells us that the sender can indeed benefit from revealing the states to the

receiver no matter what the interior initial prior is if and only if doing so makes

him strictly better off than letting the receiver choose her default action for some

initial prior. The “only if” part is straightforward: if for any prior, the sender cannot

benefit from revealing information even if the receiver does not receive private signal,

the sender can never gain from doing so if the receiver has private information and

the sender cares about the worst case payoff. On the other hand, to understand

the “if” part, suppose (i) holds for some π. Then any π̃ with full support is a

convex combination of at most N − 1 vertices of ∆N−1, say γ1, . . . , γN−1, and π

with strictly positive weight on π. In other words, if the initial prior is π̃, there

exists an information structure that induces a distribution of the receiver’s private

beliefs over {γ1, . . . , γN−1, π}. Then (i) and simple algebra will show that the sender’s

expected payoff if he does not provide any information and if the receiver is endowed

with the above private information structure is strictly less than
∑

i π̃iv
(
a[γi], i

)
. This

immediately implies that the worst case payoff to the sender at π̃ if he does not supply

any information is strictly less than
∑

i π̃iv
(
a[γi], i

)
. In other words, the sender can

benefit from persuasion at π̃.

4.2 Local ambiguity

At the other end of the sender’s ambiguity spectrum is the case in which the sender

knows that the receiver only has little private information. We call this local ambiguity

14We use “interior” for short to mean the relative interior of ∆N−1. In what follows, when we say

an open set, we mean a relatively open set.
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because the sender knows that the receiver’s private information source can only

provide coarse information and thus her possible private beliefs are all close to the

common prior. Intuitively, when the sender faces local ambiguity, he can do almost

as well as when the receiver does not have private information. This is indeed true

for generic payoffs. Let Â =
⋃
p∈∆N−1 arg maxa∈A

∑
i piu(a, i) be the set of all actions

that maximize the receiver’s expected payoff for some belief.

Proposition 3. Suppose every a ∈ Â uniquely maximizes the receiver’s expected pay-

off for some belief. Then for all π ∈ int∆N−1 and ε > 0, there exists δ > 0 such that

for all ∆̂ ⊆ O(π, δ), V (∆̂, π) > V ({π}, π)− ε. As a result, for any π ∈ int∆N−1 and

decreasing sequence of {∆̂n}n≥1 such that
⋂
n ∆̂n = {π}, limn V (∆̂n, π) = V ({π}, π).

Although this proposition is intuitive, it is not straightforward. If the receiver does

not have private information, then her private belief is just the common prior and the

sender faces no ambiguity. In this case, we know that every information structure de-

signed by the sender simply induces a distribution over the receiver’s posterior beliefs

which in turn induces a distribution over the receiver’s actions. So does the sender’s

optimal information structure in this case. Now suppose the sender in fact faces local

ambiguity. In this case, the receiver has coarse private information and so she may

have private beliefs that are close but not exactly equal to the common prior. If the

sender were to supply the information that maximizes his payoff with no ambiguity, it

is true that this information structure will induce similar distributions over posterior

beliefs regardless of the receiver’s private beliefs. However, these similar distributions

of posteriors may lead to vastly different actions by the receiver, as suggested by

Proposition 5 in Kamenica and Gentzkow (2011), because the optimal information

structure for no ambiguity under the common prior usually induces posterior beliefs

at which the receiver is indifferent between several actions. So even a slight change in

the receiver’s private belief may result in a discrete change in the receiver’s actions,

which may yield very low payoff to the sender. In other words, optimal information

structure for no ambiguity is usually not robust even to the receiver’s local private

beliefs.

The key idea behind Proposition 3 is that under the given assumption, there indeed

exists a robust information structure that is close to the optimal one for no ambiguity.

This information structure is robust because it not only induces similar distributions

of posteriors, but also induces similar distributions over the receiver’s actions as long

as the receiver’s private belief is close to the prior. Such information structure exists

because the unique maximizer condition guarantees that each action that is possibly
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chosen by the receiver will be chosen not only for one particular posterior belief, but

also for a wide range (an open set) of posterior beliefs. Because this information

structure is close to the one that maximizes the sender’s payoff when there is no

ambiguity, it guarantees the sender a payoff close to V ({π}, π) for all nearby private

beliefs. Consequently, even the worst case payoff to the sender is guaranteed to be

almost as high as V ({π}, π). In Appendix B, we provide a simple example in which

Proposition 3 fails because the unique maximizer condition is violated.

As a corollary of Proposition 3, we have

Proposition 4. Suppose π ∈ int∆N−1 and V ({π}, π) > φ0(π).15 Under the as-

sumption of Proposition 3, there exists δ > 0 such that the sender can benefit from

persuasion for all persuasion problems (∆̂, π) with ∆̂ ⊆ O(π, δ).

5 A 2× 2 example

In this section, we present a 2 × 2 example, where there are two states and the

receiver only has two actions, to illustrate how we can apply the previous results to

characterize the sender’s optimal information design.

Suppose there are two states i = 1 and i = 2. The receiver has two actions a = 1

and a = 2. The receiver’s ex post payoff is

u(a, i) =

1, if a = i,

0, if a 6= i.

So the receiver prefers taking the action that matches the underlying state.16 We

assume that the sender always prefers the receiver taking action a = 2 regardless of

the underlying states. More specifically,

v(a, i) =

1 if a = 2,

0 if a = 1.

15Proposition 2 in Kamenica and Gentzkow (2011) gives both necessary and sufficient conditions

on when this inequality holds.
16Because there are only two states and two actions, assuming that the receiver’s ex post payoff is

0 when she chooses the wrong action entails no loss of generality. The assumption that the receiver’s

payoffs are the same in both states when she chooses the correct action is made purely for ease of

exposition. The method we develop in this section can be easily extended to the case where the

receiver gets different payoffs in different states when choosing the correct action.
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Because there are only two states, we can identify agents’ belief over the states by

their belief p ∈ [0, 1] on state i = 2. Thus, the receiver’s preferred action as a function

of her posterior belief is17

a[p] =

1, if p < 1/2,

2 if p ≥ 1/2.

Moreover, each probability distribution µ over ∆ = {(s1, s2) ∈ R+|s1 + s2 = 1}
can be identified by a cumulative distribution function F over [0, 1] that represents

the distribution of s1. Thus, with slight abuse of notation, the set of all standard

information structures over ∆ can be written as

F =
{

c.d.f F over [0, 1]
∣∣ ∫

[0,1]

sdF (s) = 1/2
}
.

When the receiver observes a signal (s, 1− s) from a standard information structure

and if her private belief is (1− p, p), her posterior belief in (8) can be written as( (1− p)s
(1− p)s+ p(1− s)

,
p(1− s)

(1− p)s+ p(1− s)

)
.

Thus the receiver takes action a = 2 if and only if

p(1− s)
(1− p)s+ p(1− s)

≥ 1

2
⇐⇒ s ≤ p.

Therefore, for each standard information structure F ∈ F , the sender’s expected

payoff from F when the receiver’s private belief is p, i.e., φF (p) in (10), can be

written as

φF (p) =

∫
[0,p]

[
(1− p)s+ p(1− s)

]
dF (s)

= pF (p) + (1− 2p)

∫
[0,p]

sdF (s).

(12)

By Lemma 4, for any persuasion problem ([α, β], π) where 0 ≤ α < β ≤ 1, the

sender’s worst case payoff from F is

V F ([α, β], π) = co[α,β]φ
F (π),

and his optimal information design problem is

V ([α, β], π) = max
F∈F

V F ([α, β], π) = max
F∈F

co[α,β]φ
F (π). (13)

In the following subsections, we discuss the optimal solution to (13) for different cases

of α and β.

17Recall that we assume that the receiver takes the sender’s preferred action when the receiver is

indifferent between the two actions.
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5.1 α = 0 and β = 1

We begin with the case where the sender has full ambiguity, to illustrate our results

in Section 4.1. Figure 2 illustrates both Propositions 1 and 2. The solid red line

represents φ0. The solid blue line represents φF where

F (s) =

1
2
, if s ∈ [0, 1),

1 if s = 1,
(14)

is the standard information structure that perfectly reveals the states to the re-

ceiver. To see why F is the sender’s optimal information design, first notice that

φF (0) = φ0(0) = 0 and φF (1) = φ0(1) = 1
2

for all F ∈ F because no additional infor-

mation can change the receiver’s behavior if she already knows the underlying state.

Therefore, by Lemma 4, we know for all F ∈ F , V F ([0, 1], π) ≤ (1− π)× 0 + π× 1
2

=

φF (π) = co[0,1]φ
F (π) = V F ([0, 1], π). This immediately implies that F is optimal for

all prior π and the sender’s value is V ([0, 1], π) = V F ([0, 1], π). Moreover, because

φ0(π) < V ([0, 1], π) for all π ∈ (0, 1/2), Proposition 2 then implies that the sender

can benefit from persuasion for all π ∈ (0, 1) by supplying full information. This can

be directly verified by comparing φF and the blue dashed line in Figure 2, which is

the convexification of φ0 over [0, 1] and thus represents the sender’s value if he does

not supply any information. From the graph, we see that φF is higher than co[0,1]φ
0

for all interior π, implying that the sender can benefit from persuasion for all interior

initial priors.

0 1
p

1
2

1
2

φ0

co[0,1]φ
0co[0,1]φ

F = φF

Figure 2: Full ambiguity

Another easy case is 1
2
≤ α < β ≤ 1 in which not supplying information is
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clearly optimal because doing so yields the highest expected payoff to the sender for

all private beliefs p ∈ [α, β]. In the next two sections, we consider the case α < β

with α < 1
2

and illustrate how to apply Lemma 4 to characterize the sender’s optimal

information structures.

5.2 Linear-contingent-payoff information structures

In Section 4.1 we discussed that the characterization of optimal information design in

the full ambiguity case (i.e., α = 0 and β = 1) is simple mainly because there exists

an information structure, i.e., F in (14), such that i) it simultaneously maximizes

the sender’s contingent payoff for both private beliefs p = 0 and p = 1, which are

extreme points of [0, 1], and ii) the sender’s contingent payoff function φF is linear in

the sender’s private beliefs over the whole interval [0, 1]. The same logic also applies

to the case 0 < α < 1
2
< β = 1. To see this, consider

Fα,α(s) =


0 if s ∈ [0, α),

1
2(1−α)

if s ∈ [α, 1),

1 if s = 1.

(15)

By Kamenica and Gentzkow (2011), Fα,α is the information structure that maxi-

mizes the sender’s contingent payoff at α, i.e., Fα,α = arg maxF∈F φ
F (α). Because

φF (1) = 1
2

for all F ∈ F , Fα,α trivially maximizes the sender’s contingent payoff at

1. Moreover, it is easy to see from (12) that

φF
α,α

(p) =
(1− 2α)p+ α

2(1− α)
=

1− 2α

2(1− α)
(p− α) + α, ∀p ∈ [α, 1].

Thus φF
α,α

is linear in p over [α, 1]. By the previous discussion, we immediately know

that Fα,α is optimal for every π ∈ [α, 1].

Intuitively, Fα,α is no longer optimal for some π ∈ (α, β) when β < 1 because

Fα,α does not maximize the sender’s contingent payoff when p = β. In fact, the

characterization of the sender’s optimal information structure becomes much more

difficult when β < 1. However, as we will show, the crucial insight from the above

analysis that for every prior π ∈ [α, 1], the sender’s optimal value V ([α, 1], π) is

achieved by a linear contingent payoff function, i.e., φF
α,α

, is generalized to the case

β < 1.

We say F ∈ F is a linear-contingent-payoff information structure over [a, β] if

φF (p) = max{0, `(p)} over [α, β] for some increasing linear function `. Obviously,
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Fα,α is a linear-contingent-payoff information structure over [α, β] for any β > α.

This concept generalizes Fα,α and φF
α,α

by allowing φF to take the form

φF (p) =

0 if p ∈ [α, x],

a(p− x) if (x, β],

for some x ∈ (α, β) and a > 0.18 Notice that if F is a linear-contingent-payoff

information structure over [α, β], then co[α,β]φ
F = φF |[α,β].

We now construct some candidates for the linear-contingent-payoff information

structures. Fix 0 < β < 1. For each pair (x, b) ∈ R2 where 0 < x < min{1
2
, β} and

0 ≤ b ≤ x, let F x,b
β : [0, 1]→ R be the function defined as follows:

F x,b
β (s) ≡



0, if s ∈ [0, x),

(1− 2x)ax,bβ + 2b+
(1−2x)b−2x(1−x)ax,bβ

2
√
x(1−x)

1−2s√
s(1−s)

, if s ∈ [x, β),

(1− 2x)ax,bβ + 2b+
(1−2x)b−2x(1−x)ax,bβ

2
√
x(1−x)

1−2β√
β(1−β)

, if s ∈ [β, 1),

1 if s = 1.

(16)

where ax,bβ ∈ R is the unique solution to the following linear equation:

2(1− x)
[
1−

√
x(1− β)

(1− x)β

]
ax,bβ +

[
2 +

(1− 2x)
√

1− β√
x(1− x)β

]
b = 1. (17)

These functions can be considered as generalizations of Fα,α because Fα,α
β (i.e., x =

b = α) defined by (16) simply degenerates to Fα,α defined in (15). By continuity, let

F 0,0(s) ≡

1
2

if s ∈ [0, 1),

1 if s = 1.

So F 0,0 is the standard information structure that perfectly reveals the underlying

state in (14).

For general pair of (x, b), F x,b
β defined by (16) and (17) need not be a standard

information structure. But we will show that with some further restrictions on (x, b),

F x,b
β is guaranteed to be a linear-contingent-payoff standard information structure.

For this, we first need a technical lemma.

18It is easy to show that F is a linear-contingent-payoff information structure if and only if φF is

linear over [max{α, x}, β] where x = min suppF . In this sense, the terminology linear-contingent-

payoff information structure is appropriate.
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Lemma 5. Suppose 1
2
< β < 1. For each x ∈ [1 − β, 1

2
), there exists a unique

b∗β(x) ∈ [0, x] such that F
x,b∗β(x)

β (β) = 1. Moreover, the function b∗β : [1−β, 1
2
)→ [0, 1

2
)

is strictly increasing and onto.

Based on Lemma 5, define

A(α, β) ≡


{

(α, b)
∣∣0 ≤ b ≤ α

}
∪
{

(x, 0)
∣∣x ∈ (α, β)

}
if α < β ≤ 1

2
,{

(α, b)
∣∣0 ≤ b ≤ α

}
∪
{

(x, 0)
∣∣x ∈ (α, 1− β]

}
if α < 1− β < 1

2
< β,{

(α, b)
∣∣b∗β(α) ≤ b ≤ α

}
if 1− β ≤ α < 1

2
< β,

The thick gray lines in Figures 3 - 5 illustrate the set A(α, β) for these three cases of

α and β. The next lemma verifies that F x,b
β is a linear-contingent-payoff standard in-

formation structure for every pair of (x, b) ∈ A(α, β) and summarizes some important

properties about F x,b
β .

Lemma 6. For all α < β and (x, b) ∈ A(α, β), F x,b
β satisfies the following properties:

(i) ax,bβ > 0.

(ii) F x,b
β is a standard information structure.

(iii) φF
x,b
β satisfies

φF
x,b
β (p) =

0, if p ∈ [α, x),

ax,b(p− x) + b if p ∈ [x, β].

As a result, co[α,β]φ
Fx,bβ = φF

x,b
β |[α,β].

(iv) (1− β)F x,b
β (β) +

∫ β
0
F x,b
β (s)ds = 1/2.

(v) If α < 1− β < 1
2
< β and (x, b) = (1− β, 0) ∈ A(α, β), or 1− β ≤ α < 1

2
< β

and (x, b) = (α, b∗β(α)) ∈ A(α, β), then φF
x,b
β (β) = 1

2
.

All these properties are easily verified from (16), (17) and the construction of

A(α, β). Property (ii) states that F x,b
β is indeed a standard information structure for

every (x, b) ∈ A(α, β). Properties (iii) and (iv) point out why these information struc-

tures are special. In particular, property (iii) states that F x,b
β is a linear-contingent-

payoff information structure. The sender’s expected payoff from each information

structure F x,b
β with (x, b) ∈ A(α, β) over [α, β] is a nondecreasing and (piecewise)

linear function whose convexification is itself. For example, consider the case where

α < β < 1
2
. When x = α and b ∈ [0, α], φF

α,b
β is a linear function over [α, β] that
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passes through the point (α, b) with slope aα,bβ . When x ∈ (α, β), φF
x,0
β is a continuous

piecewise linear function: it is 0 over [α, x] and a linear function over [x, β] that passes

through (x, 0) with slope ax,0β . See Figure 3 for an illustration of this case. See also

Figures 4 and 5 for the other two cases.

0 α β 1
2

p

1
2

x

φF
x,0
β

φF
α,α
β

φF
α,b
β

b

α

β

Figure 3: An illustration of φF
x,b
β when α < β < 1

2

Property (iv) is a simple implication of the facts that F x,b
β is a standard information

structure and F x,b
β places no mass over the interval (β, 1). To better understand this

property, consider an arbitrary standard information structure F ∈ F . We know

1

2
=

∫
[0,β]

sdF (s) +

∫
(β,1]

sdF (s)

≤
∫

[0,β]

sdF (s) + (1− F (β))

= 1− (1− β)F (β)−
∫ β

0

sdF (s),

where the second equality comes from integration by parts.19 Equivalently, we have

(1− β)F (β) +

∫ β

0

F (s)ds ≤ 1

2
. (18)

19See for example Theorem 21.67 in Hewitt and Stromberg (1965) for integration by parts for

Lebesgue-Stieltjes integrals.
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1− β 1
2

p

1
2

βα

φF
1−β,0
β

φF
α,α

φF
α,0
β

Figure 4: An illustration of φF
x,b
β when α < 1− β < 1

2
< β

1
2

p

1
2

1− β βα

φF
α,α

φF
α,b
β

b

φF
α,b∗β(α)

β

b∗β(α)

Figure 5: An illustration of φF
x,b
β when 1− β ≤ α < 1

2
< β
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Thus, the inequality (18) is a necessary condition for a distribution function over

[0, 1] to be a standard information structure.20 Property (iv) in Lemma 6 then sim-

ply states that F x,b
β satisfies (18) with equality. We will repeatedly use (18) in our

characterization of optimal information structures.

Property (v) in Lemma 6, which is an implication of Lemma 5, simply states that

when β > 1
2
, there exists a pair (x, b) ∈ A(α, β) such that φF

x,b
β achieves the sender’s

highest possible value at β.

5.3 Optimal information structures

With the preparations in Section 5.2, we are now ready to characterize the sender’s

optimal information structure when 0 ≤ α < β < 1 and α < 1
2
.

Let V ∗α,β : (α, β)→ R be the upper envelope of all the conditional payoff functions

in {φF
x,b
β }(x,b)∈A(α,β). That is,

V ∗α,β(π) ≡ max
(x,b)∈A(α,β)

φF
x,b
β (π), ∀π ∈ (α, β).

Because F x,b
β is a standard information structure for every pair (x, b) ∈ A(α, β) by

Lemma 6, it is clear that V ([α, β], π) ≥ V ∗α,β(π) for all π ∈ (α, β). The next propo-

sition characterizes the sender’s value function by showing that this inequality is

in fact an equality. In other words, for every prior π ∈ (α, β), the sender’s opti-

mal value can be achieved by some linear-contingent-payoff information structure in

{F x,b
β }(x,b)∈A(α,β).

Proposition 5. Suppose 0 ≤ α < β < 1 and α < 1
2
. For any F ∈ F , co[α,β]φ

F (π) ≤
V ∗α,β(π) for all π ∈ (α, β). Therefore, V ([α, β], π) = V ∗α,β(π) for all π ∈ (α, β).

Figures 7 - 9 illustrate the value function for different cases of α and β. The proof of

this proposition is involved. The main idea is best understood by considering the case

where 0 < α < β ≤ 1
2
. Consider any standard information structure F ∈ F . For this

moment, assume that (i) F places no mass over [0, α) and (ii) φF (p) = a(p−α)+b for

all p ∈ [α, β] for some a > 0 and b ∈ [0, α]. Because φF
α,b
β (p) = aα,bβ (p−α)+b over [α, β]

by Lemma 6, if we can show a ≤ aα,bβ , then we will have co[α,β]φ
F = φF ≤ φF

α,b
β ≤ V ∗α,β

20When β ≤ 1
2 , it is easy to prove that a nondecreasing and right continuous function F : [0, β]→

[0, 1] can be extended to a standard information structure if and only if (18) holds. In this sense,

(18) is also sufficient. When β > 1
2 , then (18) and the condition β −

∫ β
0
F (s)ds < 1

2 together are

both necessary and sufficient.
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over (α, β) as desired. For this, first observe that using integration by parts, we can

rewrite the sender’s conditional payoff (12) as

φF (p) = 2p(1− p)F (p)− (1− 2p)

∫ p

α

F (s)ds, ∀p ∈ [α, β]. (19)

The linearity of φF over [α, β] then implies

2p(1− p)F (p)− (1− 2p)

∫ p

α

F (s)ds = a(p− α) + b, ∀p ∈ [α, β]. (20)

This functional equation defines a differential equation

2p(1− p)y′ − (1− 2p)y = a(p− α) + b (21)

over [α, β] with the initial condition y(α) = 0. By solving this differential equation,

we can get

F (s) = (1− 2α)a+ 2b+
(1− 2α)b− 2α(1− α)a

2
√
α(1− α)

1− 2s√
s(1− s)

, s ∈ [α, β].

Notice that F and Fα,b
β over [α, β] only differ in a and aα,bβ . Because of property (iv)

in Lemma (6), we can easily show, using the expression of F , that if a > aα,bβ , then

we must have 2β(1 − β)F (β) +
∫ β

0
F (s)ds > 1/2, which contradicts (18). Therefore

a ≤ aα,bβ and hence co[α,β]φ
F = φF ≤ φF

α,b
β ≤ V ∗α,β.

The real difficulties arise when we consider general F for which φF is not linear.

In fact, φF is not even continuous and so the above approach does not directly apply.

In dealing with these cases, we take two tricks. The first trick we take here is to

approximate co[α,β]φ
F by linear functions below φF . Thus, we only need to show that

for any linear function l below φF over [α, β], there exists F x,b
β for some (x, b) ∈ A(α, β)

such that l ≤ φF
x,b
β . Consider a linear l ≤ φF . Suppose again that l(p) = a(p−α) + b

and assume a > 0 and b ∈ [0, α] for an illustration. As above, if we can show a ≤ aα,b,

then l ≤ φF
α,b
β as desired. However, notice that (19) implies that

2p(1− p)F (p)− (1− 2p)

∫ p

0

F (s)ds ≥ a(p− α) + b, ∀p ∈ [α, β]. (22)

Unlike (20) or (21), we now have a “differential inequality” (if F is continuous) instead

of a differential equation. Obviously this cannot be explicitly “solved” as above. Our

second trick is to show that the solution G : [α, β]→ R to the differential equation

2p(1− p)G(p)− (1− 2p)

∫ p

α

G(s)ds = a(p− α) + b, ∀p ∈ [α, β], (23)
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with the initial condition
∫ α
α
G(s)ds = 0 is indeed everywhere below F over [α, β].

This step is done by constructing a sequence of continuous functions {Gn}n over [α, β]

with the property that Gn ≤ F for all n and then showing that limGn = G by the

contraction mapping theorem.21 Based on this, we then can show as before that if

a > aα,bβ , then G will violate (18) and so does F because F ≥ G. Therefore, l ≤ φF
α,b
β .

Of course, it is also possible that b < 0. In this case, there exists x ∈ (α, β) such that

l(x) = 0. Then by a similar argument, we can show that l ≤ φF
x,0
β . Figure 6 gives an

illustration. Both l and l′ are linear functions below φF and we show that l ≤ φF
α,b
β

and l′ ≤ φF
x,0
β . Finally, because every linear function below φF is bounded above by

some φF
x,b
β and thus by V ∗α,β, so is co[α,β]φ

F as desired.

0 α β 1
2

p

1
2

x

φF
x,0
β

l′
φF

α,b
β

l

b

φF

Figure 6: An illustration of the proof for Proposition 5

When β > 1
2
, the idea is similar as above: we show that co[α,β]φ

F ≤ V ∗α,β for every

F ∈ F by showing that every linear function l below φF is bounded above by V ∗α,β.

However, another difficulty arises because when β > 1
2
, (22) no longer implies that F

over [α, β] is above the solutionG to (23).22 The final trick we take here is to divide the

21The proof of this step is in the same spirit as proving the existence and uniqueness of the solution

to a differential equation. See, for example Theorem 58.5 in Tenenbaum and Pollard (1985).
22This is due to two reasons. The first is that the term 1 − 2p as the coefficient of the term∫ p

0
F (s)ds in (22) changes its sign as p increases from below 1/2 to above 1/2. The second is that
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interval [α, β] into two subintervals [α, 1
2
] and [1

2
, β]. If φF (p) ≥ `(p) = a(p−x)+b over

[α, β] for some (x, b) ∈ A(α, β), we show that F is bounded below by some function

G1 over [α, 1
2
] and another function G2 over [1

2
, β].23 We further show that if a > ax,bβ ,

then (1 − β)G2(β) +
∫ 1

2

α
G1(s)ds +

∫ β
1
2
G2(s)ds > 1

2
. This would also imply that F

violates (18) and hence a ≤ ax,bβ , which in turn implies ` ≤ φF
x,β

β ≤ V ∗α,β.

Figures 7 - 9 illustrate the sender’s optimal value function for different cases of α

and β. Based on Proposition 5, the following proposition characterizes the sender’s

optimal information design.

0 α β 1
2

p

α

β

x∗(π)

φF
x∗(π),0
β

π∗ π

V ∗α,β

Figure 7: The value function when α < β < 1
2

Proposition 6. Consider 0 ≤ α < β < 1 and α < 1
2
. Let

π∗α,β ≡
2−

√
α(1−β)
(1−α)β

2 + 1−2α
α

√
α(1−β)
(1−α)β

∈ (α, β) (24)

if α > 0 and π∗α,β ≡ 0 if α = 0. For all prior π ∈ (α, π∗α,β], the sender’s optimal

information structure is Fα,α. For each π ∈ (π∗α,β, β),

the contraction mapping we construct in previous case is no longer a contraction mapping when

α < 1/2 < β. For details, see Lemmas 9 - 11 in Appendix C.
23The function G1 is similarly constructed as in the case with β ≤ 1

2 . The construction of G2 is

more involved. See Lemma 11 for the construction.
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Figure 8: The value function when α < 1− β < 1
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< β
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Figure 9: The value function when 1− β < α < 1
2
< β

32



(i) F
x∗(π),0
β is optimal when β ≤ 1

2
or α < 1−β < 1

2
< β, where x∗(π) is the unique

solution to

max
x∈(α,min{β,1−β})

ax,0β (π − x).

Moreover, x∗ is a strictly increasing function whose range is (α,min{β, 1−β});

(ii) F
α,b∗β(α)

β is optimal when 1− β ≤ α < 1
2
< β.

Proposition 6 states that the sender’s optimal information structure is either Fα,α

or some information structure of the form F x,b
β (when α < β < 1

2
or α < 1−β < 1

2
< β)

or F
α,b∗β(α)

β (when 1 − β < α < 1
2
< β), depending on the prior π ∈ (α, β). When

the prior π is close to α, the sender’s optimal information structure is exactly the

one that maximizes his expected payoff when the prior is α and the receiver does not

have private information. This is because when the prior is close to α, the receiver’s

private belief, no matter what private information structure the receiver has, must

be close to α with large probability. Thus, to design an information structure that

is robust to all possible private information structures, the sender must make sure

that his information structure guarantees himself a high conditional payoff when the

receiver’s private belief is close to α. The information structure Fα,α achieves this goal

because it maximizes the sender’s payoff at α. Notice that for fixed α, limβ→1 π
∗
α,β = 1.

In this case, Fα,α is optimal for all p ∈ [α, 1]. This coincides with our analysis for the

case α < 1
2
< β = 1 at the beginning of Section 5.2.

On the other hand, when the prior π is close to β, Fα,α is no longer optimal. This

is because in this case the receiver’s private belief will be close to β rather than α with

large probability regardless of her private information structure. Thus, in designing

an optimal information structure, the sender actually cares more about his conditional

payoff when the receiver’s private belief is large. The information structures of the

form F x,b
β serve this purpose when α < β < 1

2
or α < 1− β < 1

2
. From Lemma 6, we

know φF
x,b
β (p) is zero, which is the sender’s lowest possible payoff, when α ≤ p ≤ x. In

other words, when the receiver’s private belief falls in the range [α, x], F x,b
β does not

change her behavior at all. The sender optimally gives up his opportunity to persuade

the receiver when her private belief is very low just because this will only happen in

rare cases no matter what the receiver’s private information structure is. By choosing

F x,b
β , the sender makes sure that his conditional payoff is high as long as the receiver’s

private belief is around π and thus high, which occurs with large probability for all

possible private information structures. When 1 − β ≤ α < 1
2
, the sender no longer

needs to give up his opportunity to persuade even when the receiver’s private belief

33



is around α. The information structure F
α,b∗β(α)

β achieves the sender’s highest possible

payoff when the receiver’s private belief is β and thus guarantees the sender a high

payoff when the receiver’s private belief is close to β. But at the same time, F
α,b∗β(α)

β

also yields a strictly positive payoff to the sender even when the receiver’s private

belief is close to α.

Information structures of the form Fα,b
β for b ∈ [0, α) when α < β < 1

2
or α <

1 − β < 1
2

and for b ∈ (b∗β(α), α) when 1 − β ≤ α < 1
2

do not appear in Proposition

6. These information structures are useful in simplifying the proof for Proposition 5,

but they are never optimal except when π = π∗α,β. To understand this, simply observe

that all the conditional payoff functions {φF
α,b
β }(α,b)∈A(α,β) intersect at π∗α,β ∈ (α, β).

Consequently, they are dominated by Fα,α when π < π∗α,β and by Fα,0 or F
α,b∗β(α)

β

when π > π∗α,β. See, for example, Figure 5 for an illustration.

6 Conclusion

In this paper, we have studied robust Bayesian persuasion problems where the receiver

has private information about which the sender only has limited knowledge. We

provide a tractable framework and general methods that can be applied to various

applications with more structure on preferences. The techniques we developed in

characterizing optimal robust persuasion rules in the 2×2 example can also be applied

to many other contexts outside the scope of Bayesian persuasion in which there are

mean-restricted ambiguity and robustness concerns.

In this paper, we assume that the sender only uses public persuasion. That is,

the sender designs a public information disclosure rule independent of the receiver’s

private information. Instead, like Kolotilin et al. (2016) and Bergemann et al. (forth-

coming), we can think of environments in which the sender can use private persuasion.

That is, the sender can condition information provided to the receiver on the receiver’s

reported type. In these environments, the sender must design a mechanism of pri-

vate persuasion that is incentive compatible and robust to his knowledge about the

distribution of the receiver’s private beliefs. This is left for future research.
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Appendix A Proofs for Section 3

Proof of Lemma 1. Consider any probability distribution ν over ∆N−1 that satisfies

supp(ν) ⊆ ∆̂ and
∫

∆N−1 pν(dp) = π. Define νi ∈ ∆(∆N−1) according to

dνi
dν

(p) =
pi
πi
, ∀p ∈ ∆N−1, (25)

if πi > 0 and let νi = ν otherwise. If πi > 0, we have νi(∆
N−1) =

∫
∆N−1(pi/πi)ν(dp) =

πi/πi = 1. Thus, I = (∆N−1, ν1, . . . , νN) is an information structure. From (25), it is

easy to see that

qIi (π, p) =


pi∑

j:πj>0 pj
if πi > 0,

0 if πi = 0.

Since
∫

∆N−1 piν(dp) = 0 for all i such that πi = 0, we know ν
(
{p ∈ ∆N−1|pi =

0 if πi = 0}
)

= 1. This in turn implies qI(π, p) = p, ν-a.s. Thus, for any measurable

A ⊂ ∆N−1,

ν̂π(A) = νπ
(
qI(π, ·) ∈ A

)
=

N∑
i=1

πiνi
(
qI(π, ·) ∈ A

)
=
∑
i:πi>0

πi

∫
qI(π,·)∈A

pi
πi
ν(dp)

=

∫
A

ν(dp),

implying that ν̂π = ν. Because supp(ν) ⊆ ∆̂, so is supp(ν̂π). Therefore I ∈ Î(∆̂, π),

completing the proof.

Proof of Lemma 2. Suppose Is = (S, µ1, . . . , µN) and I ′s = (S ′, µ′1, . . . , µ
′
N) are equiv-

alent. Then for all i = 1, . . . , N and p ∈ ∆N−1,∫
S

v
(
a
[
qIs(p, s)

]
, i
)
µi(ds) =

∫
S′
v
(
a
[
qI
′
s(p, s′)

]
, i
)
µ′i(ds

′)

because Is and I ′s always induce the same conditional posterior belief distribution.

Therefore, for all p ∈ ∆N−1,∑
i

pi

∫
S

v
(
a
[
qIs(p, s)

]
, i
)
µi(ds) =

∑
i

pi

∫
S′
v
(
a
[
qI
′
s(p, s′)

]
, i
)
µ′i(ds

′),
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implying ∫
∆N−1

(∑
i

pi

∫
S

v
(
a
[
qIs(p, s)

]
, i
)
µi(ds)

)
ν(dp)

=

∫
∆N−1

(∑
i

pi

∫
S′
v
(
a
[
qI
′
s(p, s′)

]
, i
)
µ′i(ds

′)
)
ν(dp)

for all ν ∈ ∆(∆N−1). Hence V Is(∆̂, π) = V I′s(∆̂, π) for all ∆̂ and π ∈ ∆̂ from (6).

Proof of Lemma 3. In Blackwell (1951, 1953), two information structures are equiv-

alent if the attainable payoffs from these two information structures are always the

same for every decision problem. Then he showed that each information structure

is equivalent to some standard information structure according to this notion. Al-

though it is easy to show that this notion of equivalence is in fact equivalent to that

in the current paper which in turn implies Lemma 3, here we provide a direct verifi-

cation. The construction of the standard information structure below is copied from

Blackwell (1951).

Consider any information structure I = (S, µ1, . . . , µN). As in Blackwell (1951),

define f : S → ∆N−1 as

f(s) =
(dµ1

dµ0

(s), . . . ,
dµN
dµ0

(s)
)
/N,

and let µ∗0 ≡ µ0 ◦ f−1. It is clear that µ∗0 is a measure over ∆N−1. For each i, define

µ∗i by its Radon-Nikodym derivative dµ∗i /dµ
∗
0(r)) = Nri for all r ∈ ∆N−1. It is easy

to see that µ∗0 = (
∑

i µi)/N . Moreover, for all i,

µ∗i (∆
N−1) =

∫
∆N−1

Nriµ
∗(dr) = N

∫
S

fi(s)µ0(ds) =

∫
S

µi(ds) = 1.

Therefore, (∆N−1, µ∗1, . . . , µ
∗
N) is a standard information structure. For any i, p ∈

∆N−1 and any measurable set A ⊆ ∆N−1, we have∫
{r∈∆N−1|q(p,r)∈A}

µ∗i (dr)

=N

∫
{r∈∆N−1|q(p,r)∈A}

riµ
∗
0(dr)

=

∫
f−1({r∈∆N−1|q(p,r)∈A})

µi(ds)

=

∫
{s∈S|qI(p,s)∈A}

µi(ds).

Hence I and (∆N−1, µ∗1, . . . , µ
∗
N) are equivalent.
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Proof of Lemma 4. Observe that

V µ(∆̂, π) = inf
ν∈G(∆̂,π)

∫
∆̂

φµ(p)ν(dp).

Because co∆̂φ
µ ≤ φµ|∆̂ by definition, we know

V µ(∆̂, π) ≤ inf
ν∈G(∆̂,π)

∫
∆̂

co∆̂φ
µ(p)ν(dp) ≤ inf

ν∈G(∆̂,π)
co∆̂φ

µ
(∫

∆̂

pν(dp)
)

= co∆̂φ
µ(π),

where the second inequality comes from Jensen’s inequality. On the other hand,

because ∆̂ is convex, it is well known that co∆̂φ
µ can be expressed as 24

co∆̂φ
µ(p) = inf

{
N+1∑
k=1

λkpk

∣∣∣∣∣ pk ∈ ∆̂, λk ≥ 0 for k = 1, . . . , K,∑N+1
k=1 λ

k = 1 and
∑N+1

k=1 λ
kpk = p

}
, ∀p ∈ ∆̂.

Thus, it is immediate that V µ(∆̂, π) ≤ co∆̂φ
µ(π), completing the proof.

Appendix B Proofs for Section 4

Proof of Proposition 1. For any π ∈ ∆N−1, consider ν ∈ ∆(∆N−1) such that ν puts

probability πi on γi. Obviously, ν ∈ G(∆N−1, π). Therefore, we know for all µ ∈ F ,

V µ(∆N−1, π) ≤ N

∫
∆N−1

(∫
∆N−1

∑
i

pisiv
(
a
[
q(p, s)

]
, i
)
µ(ds)

)
ν(dp)

= N

∫
∆N−1

∑
i

πisiv
(
a[γi], i

)
µ(ds)

=
∑
i

πiv
(
a[γi], i

)
,

where the second equality comes from
∫

∆N−1 siµ(dµ) = 1/N for all i.

On the other hand, consider µ∗ ∈ F that puts probability 1/N on γi for all i.

Notice that µ∗ is the standard information structure that reveals all the information.

Then, for any p ∈ ∆N−1,

φµ
∗
(π) = N

∫
∆N−1

∑
i

pisiv
(
a
[
q(p, s)

]
, i
)
µ∗(ds) =

∑
i

piv
(
a[γi], i

)
.

Therefore,

V µ∗(∆N−1, π) = co∆N−1φµ
∗
(π) =

∑
i

πiv
(
a[γi], i

)
.

24See, for example, Corollary 17.1.5 in Rockafellar (1997).
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It is then clear that

V (∆N−1, π) =
∑
i

πiv
(
a[γi], i

)
,

and thus µ∗ is optimal for all π.

Proof of Proposition 2. 2 =⇒ 1: Suppose, by contradiction, φ0(π) ≥
∑

i πiv
(
a[γi], i

)
for all π. Because π →

∑
i πiv

(
a[γi], i

)
is linear and thus convex, we know co∆̂φ

0(π) ≥∑
i πiv

(
a[γi], i

)
= V (∆̂, π) for all π by the definition of convexification. This means

that the sender cannot benefit from persuasion for any prior, a contradiction.

3 =⇒ 2: Obvious.

1 =⇒ 3: Suppose φ0(π) <
∑

i πiv
(
a[γi], i

)
for some π. Consider any π̃ ∈ int∆N−1.

Pick any j in arg maxi=1,...,N πi/π̃i. Notice that we must have πj > 0. Then for all

i 6= j, we have π̃i − π̃jπi/πj ≥ 0. This implies that π̃ is a convex combination of

{γi}i 6=j and π, because

π̃ =
∑
i 6=j

(
π̃i −

π̃j
πj
πi
)
γi +

π̃j
πj
π.

Therefore,

co∆̂φ
0(π̃) ≤

∑
i 6=j

(
π̃i −

π̃j
πj
πi
)
φ0(γi) +

π̃j
πj
φ0(π)

<
∑
i 6=j

(
π̃i −

π̃j
πj
πi
)
v
(
a[γi], i

)
+
π̃j
πj

∑
i

πiv
(
a[γi], i

)
=
∑
i

π̃iv
(
a[γi], i

)
= V (∆̂, π).

implying that the sender benefits from persuasion for all interior priors.

To facilitate the proof for Proposition 3, we first need a technical lemma. Recall

that the receiver’s action choice mapping â : ∆N−1 → A is a selection from the

correspondence

p 7→ arg max
a∈arg max

a′∈A

∑
i piu(a′,i)

∑
i

piv(a, i).

Clearly, the sender’s payoff from information design does not depend on the particular

selection of â. The next lemma states that we can always choose â so that it has nice

properties.

Lemma 7. The receiver’s action choice mapping â : ∆N−1 → A can be chosen so

that for all a ∈ â[∆N−1], â−1[a] ⊆ ∆N−1 is convex.
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Proof. For ease of exposition, define Γu : ∆N−1 ⇒ A as, for all p ∈ ∆N−1,

Γu(p) ≡ arg max
a∈A

∑
i

piu(a, i).

Since A is finite, we can list A as {a1, . . . , aK} for some K ≥ 1. For each p ∈ ∆N−1,

let â[p] be the action in arg maxa∈Γu(p)

∑
i piv(a, i) with the lowest index. Suppose

â[p] = â[p′] = ak. We now argue that â[pλ] = ak where pλ = λp + (1− λ)p′ for some

λ ∈ (0, 1).

Because ak ∈ Γu(p) and ak ∈ Γu(p
′), clearly we have ak ∈ Γu(p

λ). Suppose

al ∈ Γu(p
λ) for some l 6= k. Then the facts that ak ∈ Γu(p), a

k ∈ Γu(p
′) and

al ∈ Γu(p
λ) together imply that al ∈ Γu(p) and al ∈ Γu(p

′). If l < k, then the

fact that â[p] = â[p′] = ak and the construction of â then immediately imply that∑
i piv(ak, i) >

∑
i piv(al, i) and

∑
i p
′
iv(ak, i) >

∑
i p
′
iv(al, i), which in turn imply that∑

i p
λ
i v(ak, i) >

∑
i p

λ
i v(al, i). Similarly, if l > k, we can show that

∑
i p

λv(ak, i) ≥∑
i p

λv(al, i). Therefore, â[pλ] = ak.

Proof for Proposition 3. Let Â = {a1, . . . , aK}. Let â be the one in Lemma 7. Be-

cause each ak is the unique maximizer of the receiver’s expected payoff for some

belief, we have (i) â[∆N−1] = Â and (ii) int
(
â−1[ak]

)
6= ∅ for k = 1, . . . , K. Let

M = maxa∈A,1≤i≤N |u(a, i)|.
Fix ε > 0. Pick θ > 0 such that θ < min{ Nε

10M
, 1}. Let τ1 > 0 be such that

O(π, τ1) ⊆ ∆N−1. Because π ∈ int∆N−1, such that τ1 exists. Pick 0 < τ2 < τ1 such

that τ2/τ1 < θ/(1− θ).
Since G({π}, π) = {ν ∈ ∆(∆N−1)|ν({π}) = 1}, clearly V ({π}, π) = maxµ∈F φ

µ(π).

By Proposition 1 in Kamenica and Gentzkow (2011), maxµ∈F φ
µ(π) can be achieved

by a standard information structure µ ∈ F such that suppµ ⊆ {s1, . . . , sK} for some

s1, . . . , sK ∈ ∆N−1 that satisfy â[q(π, sk)] = ak for k = 1, . . . , K. For simplicity, let

qk ≡ q(π, sk) for k = 1, . . . , K. So the unconditional distribution of posteriors induced

by µ given prior π can be written as λ1◦q1+. . .+λK◦qK for some (λ1, . . . , λK) ∈ ∆N−1.

Then

V ({π}, π) = φµ(π) =
1

N

K∑
k=1

λk
N∑
i=1

qki v(ak, i).

Pick κ > 0 such that for all k = 1, . . . , K, |
∑N

i=1 q
k
i v(ak, i) −

∑N
i=1 qiv(ak, i)| <

Nε/5 for all q ∈ O(qk, κ). For each k = 1, . . . , K, because â−1[ak] is convex and

has nonempty interior, it is well known that every point in â−1[ak] can be ap-

proximated by points in int
(
â−1[ak]

)
.25 Thus, for each k = 1, . . . , K, we can pick

25See, for example, Theorem 6.3 in Rockafellar (1997).
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q̃k ∈ O(qk,min{τ2, κ}) such that q̃k ∈ int
(
â−1[ak]

)
. Because |q̃k − qk| < τ2 for all k,

we know
∑

k λ
kq̃k ∈ O(π, τ2) since

∑
k λ

kqk = π. Then there exists a q̃K+1 such that

|q̃k+1 − π| = τ1 and π is a convex combination of
∑

k λ
kq̃k and q̃K+1. That is, there

exists θ̃ ∈ [0, 1] such that

(1− θ̃)
K∑
k=1

λkq̃k + θ̃q̃K+1 = π. (26)

Notice that (1− θ̃)|π −
∑

k λ
kq̃k| = θ̃|π − q̃K+1| implies

θ̃

1− θ̃
<
τ2

τ1

<
θ

1− θ
,

or equivalently θ̃ < θ.

For each k = 1, . . . , K + 1, define

s̃k ≡

(
q̃k1/π1∑

j=1N q̃
k
j /πj

, . . . ,
q̃kN/πN∑
j=1N q̃

k
j /πj

)
∈ ∆N−1.

Define µ̃ ∈ ∆({s̃1, . . . , s̃K+1}) such that µ̃({s̃k}) = λ̃k

N

∑
j

q̃kj
πj

for k = 1, . . . , K + 1,

where λ̃k = (1 − θ̃)λk if k = 1, . . . , K and λ̃K+1 = θ̃. It is easy to verify that (i)

q(π, s̃k) = q̃k for k = 1, . . . , K + 1, (ii) µ̃ is a standard information structure, and

(iii) the unconditional distribution of posterior beliefs induced by µ̃ given prior π is

λ̃1 ◦ q̃1 + . . .+ λ̃K+1 ◦ q̃K+1. It is then easy to see that for all p ∈ ∆N−1.

φµ̃(p) =
1

N

K+1∑
k=1

λ̃k
N∑
i=1

piq̃
k
i

πi
v
(
a[q(p, s̃k)], i

)
.

Specifically, when p = π, we have

φµ̃(π) =
1− θ̃
N

K∑
k=1

λk
N∑
i=1

q̃ki v(ak, i) +
θ̃

N

N∑
i=1

q̃K+1
i v

(
a[q̃K+1], i

)
Because |q̃k − qk| < κ for all k = 1, . . . , K by construction, we know∣∣∣∣∣1− θ̃N

K∑
k=1

λk
N∑
i=1

q̃ki v(ak, i)− 1− θ̃
N

φµ(π)

∣∣∣∣∣
=

1− θ̃
N

K∑
k=1

λk

∣∣∣∣∣
N∑
i=1

q̃ki v(ak, i)−
N∑
i=1

qki v(ak, i)

∣∣∣∣∣
<

1

N

Nε

5

K∑
k=1

λk

=
ε

5
.
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Moreover, ∣∣∣∣∣ θ̃N
N∑
i=1

q̃K+1
i v

(
a[q̃K+1], i

)
− θ̃

N
φµ(π)

∣∣∣∣∣
≤ θ̃

N

K∑
k=1

λk

∣∣∣∣∣
N∑
i=1

q̃K+1
i v

(
a[q̃K+1], i

)
−

N∑
i=1

qki v(ak, i)

∣∣∣∣∣
≤ θ̃

N

K∑
k=1

2Mλk

≤2θM

N

<
ε

5
.

Therefore, we know φµ̃(π) > φµ(π)− 2ε/5.

Because for all k = 1, . . . , K, q̃k is in the interior of â−1[ak] and q(π, s̃k) = q̃k by

construction, and because q(·, s) : ∆N−1 → ∆N−1 is continuous, there exists δ1 > 0

such that for all p ∈ O(π, δ1), a
[
q(p, s̃k)

]
= ak for k = 1, . . . , K. Therefore, for

p ∈ O(π, δ1), φµ̃(p) can be rewritten as

φµ̃(p) =
1− θ̃
N

K∑
k=1

λk
N∑
i=1

piq̃
k
i

πi
v(ak, i) +

θ̃

N

N∑
i=1

piq̃
K+1
i

πi
v
(
a[q(p, s̃K+1)], i

)
Because the first term is linear in p, we know there exists a δ2 > 0 such that for all

p ∈ O(π, δ2),∣∣∣∣∣1− θ̃N

K∑
k=1

λk
N∑
i=1

piq̃
k
i

πi
v(ak, i)− 1− θ̃

N

K∑
k=1

λk
N∑
i=1

q̃ki v(ak, i)

∣∣∣∣∣ ≤ ε

5
.

Moreover, when p ∈ O(π, 2 mini πi), we have∣∣∣∣∣ θ̃N
N∑
i=1

piq̃
K+1
i

πi
v
(
a[q(p, s̃K+1)], i

)
− θ̃

N

N∑
i=1

q̃K+1
i v

(
a[q̃K+1], i

)∣∣∣∣∣
≤ θ̃

N

N∑
i=1

∣∣∣∣pi − πiπi

∣∣∣∣q̃K+1
i

∣∣v(a[q(p, s̃K+1)], i
)∣∣

+
θ̃

N

N∑
i=1

q̃K+1
i

∣∣v(a[q(p, s̃K+1)], i
)
− v
(
a[q̃K+1], i

)∣∣
≤2Mθ̃

N
+

2Mθ̃

N

≤4Mθ

N

<
2ε

5
.
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Let δ = min{δ1, δ2, 2 mini πi} > 0. From the above analysis, we know that for all

p ∈ O(π, δ), φµ̃(p) > φµ̃(π) − 3ε/5 > φµ(π) − ε. Therefore, for all ∆̂ ⊆ O(π, δ), we

have

V (∆̂, π) ≥ max
µ∈F

inf
p∈∆̂

φµ(p) ≥ inf
p∈∆̂

φµ̃(p) ≥ φµ(π)− ε = V ({π}, π)− ε,

where the first inequality comes from Lemma 4 and the fact that the constant mapping

p′ 7→ infp∈∆̂ φ
µ(p) over ∆̂ is a convex function below φµ. This completes the proof.

Proof for Proposition 4. Let ε = V ({π}, π) − φ0(π) > 0. By Proposition 3, there

exists δ > 0 such that for all ∆̂ ⊂ O(π, δ), V (∆̂, π) > V ({π}, π) − ε = φ0(π) ≥
co∆̂φ

0(π).

An example. We present a simple example in which Proposition 3 fails because the

unique maximizer condition does not hold for nongeneric payoffs.

Assume there are two states i = 1, 2 and three actions A = {a1, a2, a3}. Assume

the receiver strictly prefers a1 if her belief over state i = 2 is less than 1/2, a2 if her

belief is greater than 1/2 and is indifferent between all actions when belief is exactly

1/2. Assume the sender’s payoff is 0 if the receiver chooses either a1 or a2 regardless

of the states and 1 if the receiver chooses a3. So in any sender preferred subgame

perfect equilibrium, â[p] = a1 if p < 1/2, â[p] = a2 if p > 1/2 and â[p] = a3 if p = 1/2.

Notice that a3 is never the unique maximizer of the receiver’s expected payoff.

It is easy to see that V ({π}, π) > 0 for all π ∈ (0, 1). However, for any α < π < β,

V ([α, β], π) = 0. To see this, consider an arbitrary information structure µ ∈ F .

Notice that if φµ(p) > 0 for some 0 < p < 1, then µ must put strictly positive

probability over the signal (p, 1 − p). Because µ can have at most countably many

atoms, there must exist p1 ∈ (α, π) and p2 ∈ (π, β) such that µ({(p1, 1 − p1)}) =

µ({(p2, 1−p2)}) = 0. This implies that φµ(p1) = φµ(p2) = 0 and hence co[α,β]φ
µ(π) =

0.

42



Appendix C Proofs for Section 5

Proof for Lemma 5. Suppose 1− β ≤ x < 1
2
< β < 1. Consider the following system

of linear equations in (a, b):√
x(1− x)

[
1− 2x√
x(1− x)

− 1− 2β√
β(1− β)

]
a+

[
2 +

(1− 2x)(1− 2β)

2
√
x(1− x)

√
β(1− β)

]
b = 1,

(27)

2(1− x)

[
1−

√
x(1− β)

(1− x)β

]
a+

[
2 +

(1− 2x)
√

1− β√
x(1− x)β

]
b = 1.

(28)

Notice that (28) is simply the defining equation of ax,bβ in (17) and given (28), (27) is

simplify the condition that F x,b
β (β) = 1. When 1 − β ≤ x < 1

2
, this system of linear

equations has a unique solution

b∗β(x) =

1−x
1−β −

√
(1−x)β
x(1−β)[√

(1−x)β
x(1−β)

− 1
]2 .

Then it is straightforward to verify that 0 ≤ b∗β(x) ≤ x. Moreover, simple algebra will

show that b∗β(·) : [1−β, 1
2
]→ [0, 1

2
] is strictly increasing, b∗β(1−β) = 0 and b∗β(1

2
) = 1

2
.

Thus b∗β(·) is onto.

Proof for Lemma 6. Consider α < β < 1 and (x, b) ∈ A(α, β). Notice that we always

have 0 ≤ b ≤ x < 1
2

and x < β.

From (17), we know

ax,bβ =

1−
[
2 + (1−2x)

√
1−β√

x(1−x)β

]
b

2(1− x)
[
1−

√
x(1−β)
(1−x)β

] ≥ 1−
[
2 + (1−2x)

√
1−β√

x(1−x)β

]
x

2(1− x)
[
1−

√
x(1−β)
(1−x)β

] =
1− 2x

2(1− x)
> 0.

So (i) holds.

For (ii), first observe that, by (17),

(1− 2x)b− 2x(1− x)ax,bβ =
b− x

1−
√

x(1−β)
(1−x)β

≤ 0.

Because the mapping s 7→ (1− 2s)/
√
s(1− s) strictly decreases over (0, 1), we know

F x,b
β is nondecreasing over [x, β]. Using (16) and (17), it is easy to see that

F x,b
β (x) =

b

2x(1− x)
≥ 0.
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Moreover, because

F x,b
β (β) =

1

2
+
x
√

(1− x)β + (
√
x(1− β)−

√
(1− x)β)b

2(1− x)
√
x(1− β)

(29)

and because x < β, we know F x,b
β (β) decreases in b. Thus, when α < β ≤ 1

2
or

α < 1− β < 1
2
, we know

F x,b
β (β) ≤ 1

2
+

x
√

(1− x)β

2(1− x)
√
x(1− β)

=
1

2
+

√
xβ

2
√

(1− x)(1− β)
≤ 1,

where the second inequality comes from either x < β ≤ 1/2 or x ≤ 1− β < 1
2
. When

1 − β ≤ α < 1
2
, (29) and Lemma 5 directly imply that Fα,b

β (β) ≤ F
α,b∗β(α)

β (β) = 1.

Therefore, in all cases F x,b
β is nondecreasing over [0, 1]. Since it is obvious that F x,b

β

is right continuous, we know F x,b
β is a distribution function over [0, 1]. Finally,∫

[0,1]

sdF x,b
β (s) =

∫
[x,β]

sdF x,b
β (s) + (1− F x,b

β (β))

= βF x,b
β (β)−

∫ β

x

F x,b
β (s)ds+ (1− F x,b

β (β))

= 1− (1− x)

[
1−

√
x(1− β)

(1− x)β

]
ax,bβ −

[
1 +

(1− 2x)
√

1− β
2
√
x(1− x)β

]
b

=
1

2
,

where the second inequality comes from integration by parts. This proves that F x,b
β

is a standard information structure. Notice that the second equality also proves (iv).

For (iii), first observe that the fact that F x,b
β (s) = 0 for all s ∈ [0, x) implies

φF
x,b
β (p) = 0 for all p < x by (12). For p ∈ [x, β], from (12) again, we have

φF
x,b
β (p) = 2p(1− p)F x,b

β (p)− (1− 2p)

∫ p

x

F x,b
β (s)ds

= 2p(1− p)

[
(1− 2x)ax,bβ + 2b+

(1− 2x)b− 2x(1− x)ax,bβ

2
√
x(1− x)

1− 2p√
p(1− p)

]

− (1− 2p)

[(
(1− 2x)ax,bβ + 2b

)
(p− x) +

(1− 2x)b− 2x(1− x)ax,bβ√
x(1− x)

×
(√

p(1− p)−
√
x(1− x)

)]
= ax,bβ (p− x) + b,
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proving (iii).

For (v), let (x, b) = (1− β, 0) if α < 1− β < 1
2

and (x, b) = (α, b∗β(α)). We know

F x,b
β (β) = 1 for the first case by (29) and for the second case by Lemma 5. Therefore,

by (ii) in the previous steps, we have

φF
x,b
β (β) = βF x,b

β (β) + (1− 2β)

∫
[0,β]

sdF x,b
β (s) = β +

1

2
(1− 2β) =

1

2
.

This completes the proof.

The proof of Proposition 5 consists of a series of lemmas. The next two lemmas

are technical ones.

Lemma 8. Let f : [u, v]→ R be a function. Suppose f is bounded from below. Then

for all x ∈ (u, v), we have26

co[u,v]f(x) = sup
linear `:[u,v]→R,

`≤f

`(x). (30)

Proof. Because co[u,v]f is convex by definition and because x is an interior point, the

left derivative of co[u,v]f at x exists. Denote this derivative by a ∈ R. Then f(x′) ≥
co[u,v]f(x′) ≥ `x(x′) for all x′ ∈ [u, v] where `x : [u, v] → R is the linear function

x′ 7→ a(x′− x) + co[u,v]f(x). Because `x is below f and because `x(x) = co[u,v]f(x) by

construction, we know

co[u,v]f(x) ≤ sup
linear `:[u,v]→R,

`≤f

l(x).

The other direction of the above inequality is straightforward, completing the proof.

For any real numbers u < v, let C[u, v] be the space of all continuous functions

over [u, v] endowed with the uniform norm ‖ · ‖.

Lemma 9. (i) Suppose 0 < u < v ≤ 1
2
. Let h ∈ C[u, v] be an arbitrary function and

T : C[u, v]→ C[u, v] be the operator defined as follows: for f ∈ C[u, v],

(Tf)(p) ≡
h(p) + (1− 2p)

∫ p
u
f(s)ds

2p(1− p)
, ∀p ∈ [u, v].

Then T is a contraction mapping. As a result, T has a unique fixed point f ∗ ∈ C[u, v]

and limn T
ng = f ∗ for any g ∈ C[u, v].

26In general, (30) does not hold for x ∈ {u, v} unless f is continuous at the endpoints.
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(ii) Suppose 1
2
≤ u < v < 1. Let h ∈ C[u, v] be an arbitrary function and

T : C[u, v]→ C[u, v] be the operator defined as follows: for f ∈ C[u, v],

(Tf)(p) ≡
h(p)− (1− 2p)

∫ v
p
f(s)ds

2p(1− p)
, ∀p ∈ [u, v].

Then T is a contraction mapping. As a result, T has a unique fixed point f ∗ ∈ C[u, v]

and limn T
ng = f ∗ for any g ∈ C[u, v].

Proof. We only prove (i). The other case is symmetric. Clearly, for every f ∈ C[u, v],

the function Tf is well defined and continuous. Thus, T is well defined. For any

f, f ′ ∈ C[u, v], we have

‖Tf − Tf ′‖ = max
u≤p≤v

∣∣∣∣ 1− 2p

2p(1− p)

∫ p

u

(
f(s)− f ′(s)

)
ds

∣∣∣∣
≤ ‖f − f ′‖ max

u≤p≤v

(1− 2p)(p− u)

2p(1− p)
.

Because

(1− 2p)(p− u)

2p(1− p)
= 1− p(1− u) + (1− p)u

2p(1− p)
≤ 1− u(1− u)

v(1− v)
, ∀p ∈ [u, v],

we know T is a contraction mapping.

The next two lemmas show that if the conditional payoff function φF for a standard

information structure F ∈ F over [α, β] is bounded from below by a linear function,

then F itself over [α, β] is bounded from below by a particular function.

Lemma 10. Suppose 0 ≤ α < β < 1 and α < 1
2
. Let F ∈ F be an arbitrary

standard information structure. Assume `(p) ≡ a(p−x) + b ≤ φF (p) for all p ∈ [α, β]

where (x, b) ∈ A(α, β) and a > 0. If x > 0, then F ≥ G over [x,min{1
2
, β}] where

G : [x,min{1
2
, β}]→ R is defined as

G(p) ≡ (1−2x)a+2b+
(1− 2x)b− 2x(1− x)a

2
√
x(1− x)

1− 2p√
p(1− p)

, ∀p ∈ [x,min{1

2
, β}]. (31)

If x = 0, which only occurs when α = 0 and in which case b = 0, F ≥ a over

[0,min{1
2
, β}].

Proof. First consider the case where x > 0. Define a sequence of continuous functions

{Gn}n≥0 over [x,min{1
2
, β}] as follows:

G0(p) ≡ 0, ∀p ∈ [x,min{1

2
, β}],
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and

Gn(p) ≡
`(p) + (1− 2p)

∫ p
x
Gn−1(s)ds

2p(1− p)
, ∀p ∈ [x,min{1

2
, β}].

By Lemma 9, {Gn}n≥0 uniformly converges to a continuous functionG : [x,min{1
2
, β}]→

R that satisfies

G(p) =
`(p) + (1− 2p)

∫ p
x
G(s)ds

2p(1− p)
, ∀p ∈ [x,min{1

2
, β}].

This functional equation defines a differential equation

2p(1− p)y′ − (1− 2p)y = `

over [x,min{1
2
, β}] with the initial condition y(x) = 0. The unique solution to this

differential equation is

G(s) ≡ (1− 2x)a+ 2b+
(1− 2x)b− 2x(1− x)a

2
√
x(1− x)

1− 2s√
s(1− s)

, ∀s ∈ [x,min{1

2
, β}].

It remains to show that F ≥ G over [x,min{1
2
, β}]. For this, it suffices to show that

F ≥ Gn over [x,min{1
2
, β}] for all n ≥ 0. We show this by induction. Clearly this is

true for n = 0 because F ≥ 0. Assume F ≥ Gn over [x,min{1
2
, β}] for some n ≥ 0.

Observe that by integration by parts, (12) can be written as

φF (p) = 2p(1− p)F (p)− (1− 2p)

∫ p

0

F (s)ds.

Then ` ≤ φF over [α, β] implies that for all p ∈ [x,min{1
2
, β}] ⊆ [α, β],

2p(1− p)F (p) ≥ `(p) + (1− 2p)

∫ p

0

F (s)ds ≥ `(p) + (1− 2p)

∫ p

x

F (s)ds.

Because F ≥ Gn over [x,min{1
2
, β}] by induction hypothesis and because (1−2p) ≥ 0

for p ∈ [0, 1
2
], we know

2p(1− p)F (p) ≥ `(p) + (1− 2p)

∫ p

x

Gn(s)ds, ∀p ∈ [x,min{1

2
, β}],

or equivalently

F (p) ≥
`(p) + (1− 2p)

∫ p
x
Gn(s)ds

2p(1− p)
= Gn+1(p), ∀p ∈ [x,min{1

2
, β}].

This completes the proof for x > 0.
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Now assume x = 0. Then `(p) = ap. For n ≥ 1, define `k(p) ≡ a(p− 1
k
). Observe

that ( 1
k
, 0) ∈ A(0, β) when k is sufficiently large. Because `k(p) ≤ `(p) ≤ φF (p) for

all p ∈ [0, β], by the previous results we know F ≥ G̃k over [ 1
k
,min{1

2
, β}] where

G̃k(p) =

(
1− 2

k

)
a−

√
1

k

(
1− 1

k

)
1− 2p

2p(1− p)
, ∀p ∈ [

1

k
,min{1

2
, β}].

Therefore, for all p ∈ (0,min{1
2
, β}], we have

F (p) ≥ lim
k→∞

G̃k(p) = a,

By right continuity of F , we know F (0) ≥ a as well, completing the proof.

Lemma 11. Suppose 0 ≤ α < 1
2
< β < 1. Let F ∈ F be an arbitrary standard

information structure. Assume `(p) ≡ a(p − x) + b ≤ φF (p) for all p ∈ [α, β] where

(x, b) ∈ A(α, β) and a > 0. Then F ≥ G over [1
2
, β] where G : [1

2
, β] → R is defined

as

G(p) ≡ (1− 2x)a+ 2b− (2(1− x)a+ 2b− 1)β

2
√
β(1− β)

1− 2p√
p(1− p)

, ∀p ∈ [
1

2
, β]. (32)

Proof. The proof is similar to that of Lemma 10.

Define `′ : [1
2
, β]→ R as

`′(p) =
(
a− 2β + 2a(β − α) + 2b

)
p− aβ + β, ∀p ∈ [

1

2
, β].

Define a sequence of continuous functions {Gn}n≥0 over [1
2
, β] as follows:

G0(p) ≡ 0, ∀p ∈ [
1

2
, β],

and

Gn(p) ≡
`′(p)− (1− 2p)

∫ β
p
Gn−1(s)ds

2p(1− p)
, ∀p ∈ [

1

2
, β].

By Lemma 9 again, {Gn}n≥0 uniformly converges to a continuous functionG : [1
2
, β]→

R that satisfies

G(p) =
`′(p)− (1− 2p)

∫ β
p
G(s)ds

2p(1− p)
, ∀p ∈ [

1

2
, β].

This functional equation defines a differential equation

−2p(1− p)y′ + (1− 2p)y = `′
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over [1
2
, β] with the boundary condition y(β) = 0. The unique solution to this differ-

ential equation is

G(p) ≡ (1− 2x)a+ 2b− (2(1− x)a+ 2b− 1)β

2
√
β(1− β)

1− 2p√
p(1− p)

, ∀p ∈ [
1

2
, β].

Again, it remains to show that F ≥ G over [1
2
, β]. Similarly as the proof for Lemma

10, it suffices to show that F ≥ Gn over [1
2
, β] for all n ≥ 1. This can be done again

by induction. Clearly F ≥ G0 over [1
2
, β]. Now assume F ≥ Gn over [1

2
, β] for some

n ≥ 0. From (12) and the fact that F is a standard information structure, we can

rewrite φF as

φF (p) = pF (p) + (1− 2p)

(
1

2
−
∫

(p,1]

sdF (s)

)
= 2p(1− p)F (p) + (1− 2p)

∫ 1

p

F (s)ds− 1

2
(1− 2p),

where the second equality comes from integration by parts again. The assumption

that ` ≤ φF over [α, β] then implies that for p ∈ [1
2
, β] ⊆ [α, β],

2p(1− p)F (p)

≥`(p) +
1

2
(1− 2p)− (1− 2p)

∫ 1

p

F (s)ds

≥`(p) +
1

2
(1− 2p)− (1− 2p)

∫ β

p

F (s)ds− (1− 2p)(1− β)F (β), (33)

where the second inequality comes from the fact that 1−2p ≤ 0 for p ∈ [1
2
, β] and the

fact that
∫ 1

p
F (s)ds ≥

∫ β
p
F (s)ds+(1−β)F (β). Letting p = β in the above inequality

yields

(1− β)F (β) ≥ `(β) +
1

2
(1− 2β).

Plugging this inequality back into (33), we have for p ∈ [1
2
, β],

2p(1− p)F (p) ≥ `(p)− (1− 2p)

∫ β

p

F (s)ds− (1− 2p)
(
`(β)− β

)
= `′(p)− (1− 2p)

∫ β

p

F (s)ds.

Because F ≥ Gn over [1
2
, β] by induction hypothesis, we know

2p(1− p)F (p) ≥ `′(p)− (1− 2p)

∫ β

p

Gn(s)ds, ∀p ∈ [
1

2
, β],
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or equivalently

F (p) ≥
`′(p)− (1− 2p)

∫ β
p
Gn(s)ds

2p(1− p)
= Gn+1(p), ∀p ∈ [

1

2
, β].

This completes the proof.

With Lemmas 10 and 11, we are now ready to state the following result which is

the key to Proposition 5.

Lemma 12. Fix 0 ≤ α < β < 1 and α < 1
2
. For any F ∈ F and linear ` : [α, β]→ R

such that ` ≤ φF |[α,β], there exists a pair (x, b) ∈ A(α, β) such that

`(p) ≤ φF
x,b
β (p), ∀p ∈ [α, β].

Proof. Fix an F ∈ F and an arbitrary linear ` : [α, β]→ R such that ` ≤ φF |[α,β]. In

what follows, we will simply write ` ≤ φF to mean ` ≤ φF |[α,β] because we only focus

on functions with domain [α, β].

Recall that Kamenica and Gentzkow (2011) show that maxF∈F φ
F (α) = φF

α,α
β (α) =

α. So we know `(α) ≤ φF (α) ≤ α. If ` is nonincreasing, we then immediately know

that ` ≤ φF
α,α
β because φF

α,α
β is increasing by Lemma 6 and `(α) ≤ α = φF

α,α
β (α). Sim-

ilarly, if ` is increasing and `(β) ≤ 0, we know ` ≤ φF
α,α
β again because ` ≤ 0 ≤ φF

α,α
β .

In the following, we assume that ` is increasing and `(β) > 0. If `(α) ≥ 0, define

x` ≡ α. Observe that in this case, `(x`) = `(α) ≤ φF (α) ≤ maxF ′∈F φ
F ′(α) = α.

If `(α) < 0, define x` to be the unique point in (α, β) such that `(x`) = 0. In both

cases, we can express ` as

`(p) = a(p− x`) + `(x`)

for some a > 0. We proceed by considering three different cases of α and β.

Case 1: 0 ≤ α < β ≤ 1
2
.

We proceed to show that l ≤ φF
x`,`(x`)

β . By Lemma 6, it suffices to show that

a ≤ a
x`,`(x`)
β . If x` = α = 0, we know 0 ≤ `(x`) ≤ φF (0) = 0 where the first inequality

comes from the construction of x`. Because (0, 0) ∈ A(0, β), Lemma 10 implies that

F ≥ a over [0, β]. So

(1− β)F (β) +

∫ β

0

F (s)ds ≥ (1− β)a+ aβ = a.

By (18), we have a ≤ 1
2

= a0,0
β .
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Now assume x` > 0. Because (x`, `(x`)) ∈ A(α, β), Lemma 10 again implies that

F ≥ G over [x`, β] where

G(p) ≡ (1− 2x`)a+ 2`(x`) +
(1− 2x`)`(x`)− 2x`(1− x`)a

2
√
x`(1− x`)

1− 2p√
p(1− p)

, ∀p ∈ [x`, β].

Therefore we have

(1− β)F (β) +

∫ β

0

F (s)ds

≥(1− β)G(β) +

∫ β

x`

G(s)ds

=(1− x`)

[
1−

√
x`(1− β)

(1− x`)β

]
a+

1

2

[
2 +

(1− 2x`)
√

1− β√
x`(1− x`)β

]
`(x`). (34)

Comparing (34) and (17) when (x, b) = (x`, `(x`)), it is immediately to see that if

a > a
x`,`(x`)
β , we will have (1 − β)F (β) +

∫ β
0
F (s)ds > 1

2
which violates (18) again.

Therefore we must have a ≤ a
x`,`(x`)
β , completing the proof of this case.

Case 2: 0 ≤ α < 1− β < 1
2
< β.

Because φF (β) ≤ maxF ′∈F φ
F ′(β) = 1

2
, we know `(β) ≤ 1

2
. Because φF

1−β,0
β (β) = 1

2

by Lemma 6, if x` > 1 − β, we know ` ≤ φF
1−β,0
β . Now assume x` ≤ 1 − β. If

x` = α = 0, we can use a similar proof as before to show that(
1− 1

2

)
F

(
1

2

)
+

∫ 1
2

0

F (s)ds ≥ a.

By (18) again, we know a ≤ 1
2

= a0,0
β . Now assume 0 < x` ≤ 1 − β. Because

(x`, `(x`)) ∈ A(α, β), we only need to show that a ≤ a
x`,`(x`)
β . Lemma 10 implies that

F ≥ G1 over [x`,
1
2
] where

G1(p) ≡ (1− 2x`)a+ 2`(x`) +
(1− 2x`)`(x`)− 2x`(1− x`)a

2
√
x`(1− x`)

1− 2p√
p(1− p)

, ∀p ∈ [x`,
1

2
].

Moreover, Lemma 11 implies that F ≥ G2 over [1
2
, β] where

G2(p) ≡ (1− 2x`)a+ 2`(x`)−
(2(1− x`)a+ 2`(x`)− 1)β

2
√
β(1− β)

1− 2p√
p(1− p)

, ∀p ∈ [
1

2
, β].
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Therefore, we have

(1− β)F (β) +

∫ β

0

F (s)ds

≥(1− β)G2(β) +

∫ 1
2

x`

G1(s)ds+

∫ β

1
2

G2(s)ds

=(1− x`)

[
1−

√
x`(1− β)

(1− x`)β

]
a+

1

2

[
2 +

(1− 2x`)
√

1− β√
x`(1− x`)β

]
`(x`). (35)

Similarly as previous case, comparing (35) and (17) when (x, b) = (x`, `(x`)), it is

immediately to see that if a > a
x`,`(x`)
β , we will have (1 − β)F (β) +

∫ β
0
F (s)ds > 1

2

which violates (18) again. Therefore we must have a ≤ a
x`,`(x`)
β , completing the proof

of this case.

Case 3: 1− β ≤ α < 1
2
< β.

Similarly as before, because φF
α,b∗β(α)

β (β) = 1
2
≥ φF (β) ≥ `(β), if either x` = α and

`(x`) < b∗β(α), or x` > α and `(x`) = 0, we know ` ≤ φF
α,b∗β(α)

β . Now assume x` = α

and `(x`) ≥ b∗β(α). Because again `(x`) ≤ φF (α) ≤ α, we know (x`, `(x`)) ∈ A(α, β).

Then we can use a similar argument as in the previous case to show that a ≤ a
x`,`(x`)
β ,

completing the proof of this case.

We are now ready to prove Proposition 5.

Proof for Proposition 5. For any F ∈ F , Lemmas 8 and 12 together imply

co[α,β]φ
F (π) = sup

linear `:[α,β]→R
`≤φF

`(π) ≤ max
(x,b)∈A(α,β)

φF
x,b
β (π) = V ∗α,β(π), ∀π ∈ (α, β).

Hence V ([α, β], π) = maxF∈F co[α,β]φ
F (π) = V ∗α,β(π) for all π ∈ (α, β).

Proof for Proposition 6. Because of Proposition 5, to show an information structure

F ∈ {F x,b
β }(x,b)∈A(α,β) is the sender’s optimal information structure, it suffices to show

that this F is optimal among {F x,b
β }(x,b)∈A(α,β).

First assume 0 < α < β ≤ 1
2

or 0 < α < 1 − β < 1
2
< β. Because aα,bβ

defined in (17) is linear in b ∈ [0, α], it is straightforward to see that the linear

functions {φF
α,b
β }b∈[0,α] all intersect at π∗α,β ∈ (α, β) defined in (24). It is then obvious

to see that for all b ∈ [0, α), φF
α,α

(p) ≥ φF
α,b
β (p) for all p ∈ [α, π∗α,β] with strict

inequality if p < π∗α,β. Moreover, it is also straightforward to verify that φF
α,0
β (π∗α,β) =

aα,0β (π∗α,β − α) > ax,0β (π∗α,β − x) = φF
x,0
β (π∗α,β) for all x ∈ (α,min{β, 1− β}). Thus, for
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all x ∈ (α,min{β, 1−β}), we have φF
α,α

(p) > φF
x,0
β (p) for all p ∈ [α, π∗α,β]. Therefore,

we know Fα,α is optimal for all π ∈ (α, π∗α,β]. On the other hand, the fact that

{φF
α,b
β }b∈[0,α] all intersect at π∗α,β also implies that for all b ∈ (0, α], φF

α,0
β (p) > φF

α,b
β (p)

for all p ∈ (π∗α,β, β]. Thus, {Fα,b
β }b∈(0,α] are not optimal when π > π∗α,β. This implies

that

V ∗α,β(π) = max
x∈[α,min{β,1−β})

φF
x,0
β (π) = max

x∈[α,min{β,1−β})
ax,0β (π − x), ∀π ∈ (π∗α,β, β).

Plugging in the expression for ax,0β yields

V ∗α,β(π) = max
x∈[α,min{β,1−β})

π − x

2(1− x)
[
1−

√
x(1−β)
(1−x)β

] , ∀π ∈ (π∗α,β, β). (36)

It is then easy to see that for each π ∈ (π∗α,β, β), there exists a unique solution

x∗(π) ∈ (α,min{β, 1− β}) and thus F
x∗(π),0
β is optimal. Furthermore, simple algebra

shows that x∗ : (π∗α,β, β) → (α,min{β, 1 − β}) is strictly increasing and onto. The

above analysis assumed α > 0. When α = 0, π∗α,β = 0 by construction and we only

need to consider (36).

Finally, assume 1− β ≤ α < 1
2
< β. Similarly as above, we know {φF

α,b
β }b∈[b∗β(α),α]

intersect at π∗α,β ∈ (α, β). Thus φF
α,α

(π) is the biggest for π < π∗α,β and φF
α,b∗β(α)

β (π)

is the biggest if π > π∗α,β. Therefore, Fα,α is optimal if π ∈ (α, π∗α,β) and F
α,b∗β(α)

β is

optimal if π ∈ (π∗α,β, β).
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Alonso, Ricardo and Odilon Câmara, “Bayesian Persuasion with Heterogeneous

Prior,” Journal of Economic Theory, 2016, 165, 672–706.

Aumann, Robert J, Michael Maschler, and Richard E Stearns, Repeated

Games with Incomplete Information, Cambridge, MA: MIT Press, 1995.

Bergemann, Dirk, Alessandro Bonatti, and Alex Smolin, “The Design and

Price of Information,” American Economic Review, forthcoming.

and Karl Schlag, “Pricing without Priors,” Journal of the European Economic

Association, 2008, 6, 560–569.

and , “Robust Monopoly Pricing,” Journal of Economic Theory, 2011, 146 (6),

2527–2543.

53



, Benjamin Brooks, and Stephen Morris, “Informationally Robust Optimal

Auction Design,” working paper 2016.

Blackwell, David, “Comparison of Experiments,” in Jerzy Neyman, ed., Proceed-

ings of the Second Berkeley Symposium on Mathematical Statistics and Probability,

University of California Press, Berkeley, Califonia 1951, pp. 93–102.

, “Equivalent Comparisons of Experiments,” Annals of Mathematical Statistics,

1953, 24 (2), 265–272.

Bodoh-Creed, Aaron L., “Ambiguous Beliefs and Mechanism Design,” Games and

Economic Behavior, 2012, 75 (2), 518 – 537.

Bose, Subir and Ludovic Renou, “Mechanism Design with Ambiguous Commu-

nication Devices,” Econometrica, 2014, 82, 1853–1872.

, Emre Ozdenoren, and Andreas Pape, “Optimal Auctions with Ambiguity,”

Theoretical Economics, 2006, 1, 411–438.

Carrasco, Vinicius, Vitor Farinha Luz, Nenad Kos, Matthias Messner,

Paulo Monteiro, and Humberto Moreira, “Optimal Selling Mechanism under

Moment Conditions,” working paper 2017.

Carroll, Gabriel, “Robustness and Linear Contracts,” The American Economic

Review, 2015, 105 (2), 536–563.

Du, Songzi, “Robust Mechanisms under Common Valuation,” working paper 2017.

Esponda, Ignacio and Demian Pouzo, “Berk-Nash Eequilibrium: A Framework

for Modeling Agents with Misspecified Models,” Econometrica, 2016, 84 (2), 1093–

1130.

and , “Equilibrium in Misspecified Markov Decision Processes,” working paper

2016.

Garrett, Daniel F., “Robustness of Simple Menus of Contracts in Cost-based Pro-

curement,” Games and Economic Behavior, 2014, 87, 631–641.

Gentzkow, Matthew and Emir Kamenica, “Costly Persuasion,” American Eco-

nomic Review, 2014, 104 (5), 457–462.

54



and , “Competition in Persuasion,” Review of Economic Studies, 2017, 84 (1),

300–322.

and , “Disclosure of Endogenous Information,” Economic Theory Bulletin, 2017,

5 (1), 47–56.

Gilboa, Itzhak and David Schmeidler, “Maxmin Expected Utility with Non-

unique Prior,” Journal of mathematical economics, 1989, 18 (2), 141–153.

Gill, David and Daniel Sgroi, “The Optimal Choice of Pre-launch Reviewer,”

Journal of Economic Theory, 2012, 147 (3), 1247–1260.

Guo, Yingni and Eran Shmaya, “The Interval Structure of Optimal Disclosure,”

working paper 2017.

Hedlund, Jonas, “Bayesian Persuasion by a Privately Informed Sender,” Journal

of Economic Theory, 2017, 167, 229–268.

Hewitt, Edwin and Karl Stromberg, Real and Abstract Analysis: A Modern

Treatment of the Theory of Functions of a Real Variable, New York: Springer-

Verlag, 1965.

Kamenica, Emir and Matthew Gentzkow, “Bayesian Persuasion,” American

Economic Review, 2011, 101 (6), 2590–2615.

Kolotilin, Anton, “Optimal Information Disclosure: A Linear Programming Ap-

proach,” Theoretical Economics, forthcoming.

, Ming Li, Tymofiy Mylovanov, and Andriy Zapechelnyuk, “Persuasion of

a Privately Informed Receiver,” UNSW Business School Working Paper No. 2016

ECON 21 2016.

Li, Fei and Peter Norman, “On Bayesian Persuasion with Multiple Senders,”

working paper 2017.

Li, Jian and Ming Li, “Ambiguous Persuasion,” working paper 2017.

Perez-Richet, Eduardo, “Interim Bayesian Persuasion: First Steps,” American

Economic Review, P&P, 2014, 104 (5), 469–474.

Rayo, Luis and Ilya Segal, “Optimal Information Disclosure,” Journal of political

Economy, 2010, 118 (5), 949–987.

55



Rockafellar, Ralph Tyrell, Convex Analysis Princeton Landmarks in Mathematics

and Physics, Princeton, NJ: Princeton University Press, 1997.

Smith, Lones and Peter Sørensen, “Pathological Outcomes of Observational

Learning,” Econometrica, 2000, 68 (2), 371–398.

Tenenbaum, Morris and Harry Pollard, Ordinary Differential Equations, New

York: Dover Publications, INC., 1985.

Wolitzky, Alexander, “Mechanism Design with Maxmin Agents: Theory and an

Application to Bilateral Trade,” Theoretical Economics, 2016, 11 (3), 971–1004.

56


	Introduction
	Related Literature

	Model
	Basic setup and notation
	Modeling the sender's ambiguity
	Sender's information design problem

	Simplifying the sender's problem
	Receiver's private belief distributions
	Sender's standard information structure
	Convexification

	Value of persuasion
	Full ambiguity
	Local ambiguity

	A 2 X 2 example
	a=0 and b=1
	Linear-contingent-payoff information structures
	Optimal information structures

	Conclusion
	Appendix Proofs for Section 3
	Appendix Proofs for Section 4
	Appendix Proofs for Section 5

