AFAFFTHEHEZHHR F
China Center for Economic Research
W45 % %)

Working Paper Series

No.E2016007 April 2016

Option Pricing with the Realized GARCH Model: An Analytical Approximation Approach
Zhuo Huang  Tianyi Wang Peter Reinhard Hansen

Abstract:

We derive a pricing formula for European options for the Realized GARCH framework. The
formula is based on an analytical approximation using an Edgeworth expansion for the density of
cumulative return. Existing approximations in this context that were labeled Edgeworth are, in
fact, based on a Gram-Charlier expansion. The distinction is important because the proper
Edgeworth expansion offers a more accurate approximation. In relation to existing discrete-time
option pricing models with realized volatility, our model is log-linear,non-affine, with a flexible
leverage effect. We conduct an extensive empirical analysis on S&P500 index options and the
results show that our computationally fast formula outperforms competing methods in terms of
pricing errors, both in-sample and out-of-sample.

Keyword:

Realized GARCH, Analytical approximation, Edgeworth expansion, Option pricing, Realized
variance.



Option Pricing with the Realized GARCH Model: An
Analytical Approximation Approach*

Zhuo Huang “ Tianyi Wang ° Peter Reinhard Hansen®
“Peking University, National School of Development

b University of International Business and Economics,

School of Banking and Finance

¢ University of North Carolina at Chapel Hill & CREATES

August 30, 2016

Abstract

We derive a pricing formula for European options for the Realized GARCH
framework. The formula is based on an analytical approximation using an
Edgeworth expansion for the density of cumulative return. Existing
approximations in this context that were labeled Edgeworth are, in fact, based on
a Gram-Charlier expansion. The distinction is important because the proper
Edgeworth expansion offers a more accurate approximation. In relation to existing
discrete-time option pricing models with realized volatility, our model is log-linear,
non-affine, with a flexible leverage effect. We conduct an extensive empirical
analysis on S&P500 index options and the results show that our computationally
fast formula outperforms competing methods in terms of pricing errors, both

in-sample and out-of-sample.

Keyword: Realized GARCH, Analytical approximation, Edgeworth expansion,

Option pricing, Realized variance.

*We are grateful to Bob Webb (editor) and all participates of the 1st China Derivatives Markets
Conference (CDMC) and the 6th IMS-FIPS Workshop for useful comments that substantially improved
the paper. Zhuo Huang acknowledges financial support from the Youth Fund of the National Natural
Science Foundation of China (71201001,71671004). Tianyi Wang (corresponding author) acknowledges
financial support from the Youth Fund of National Natural Science Foundation of China (71301027),
the Ministry of Education of China, Humanities and Social Sciences Youth Fund (13YJC790146) and
the Fundamental Research Fund for the Central Universities in UIBE(14YQO05). Peter Reinhard Hansen
acknowledges support from the Center for Research in Econometric Analysis of Time Series (DNRF78),
funded by the Danish National Research Foundation. Corresponding email: tianyiwang@uibe.edu.cn.



1 Introduction

It is well known that realized measures of volatility, which are computed from high
frequency data, provide accurate measurements of the latent volatility process. The
prime example is the realized variance, see e.g. Andersen et al. (2003). Volatility is
fundamental for option pricing, so it is natural to explore ways to incorporate realized
measures into option pricing. Several papers have recently shown that discrete time
models that incorporate the realized variance, can significantly improve the performance
of option pricing. For example, Christoffersen et al. (2014) develop an affine discrete-
time model to provide a closed-form option valuation formula through the conditional
moment-generating function. The volatility dynamic is modeled as a weighted average
between components from daily returns and realized variances, where both components
have a Heston-Nandi! structure. They show that including the realized variance results
in a considerable pricing improvement. Their paper also suggests the need for further
research on pricing, using non-affine models and modeling leverage effect separately for
both return and realized measures. A related framework is that in Corsi et al. (2013), who
employ a Heterogeneous Autoregressive Gamma (HARG) model. This model assumes
that the realized variance follows a simple process (with linear long-memory features) and
option pricing can be obtained using Monte Carlo simulation. This model was further
developed in Majewskia et al. (2015), who enhance the HARG model with a Heston-
Nandi type leverage. Their framework includes a class of linear GARCH models with
parabolic leverage, including those in Heston and Nandi (2000) and Christoffersen et al.
(2008), and the framework conveniently leads to a closed-form option pricing formula.

In this paper, we derive the option pricing formula for the Realized GARCH
framework, which may result in better pricing performance, becauce the Realized
GARCH framework has proven to be superior to conventional GARCH models for the
modeling of returns and for forecasting volatility. The Realized GARCH model was
proposed by Hansen et al. (2012), and further refined by Hansen and Huang (2016),
which is the variant we adopt for the option pricing in this paper. The model may be
labelled as a non-affine log-linear Realized Exponential GARCH model.

The Realized GARCH framework is attractive for option pricing for several reasons.
First, the realized variance is incorporated in the model and linked to the latent
conditional volatility through a measurement equation. This not only improves the
accuracy of the volatility forecast, but also allows for an additional risk premium that
relates to volatility-specific shocks. Second, the model benefits from having both return
and volatility shocks, similar to stochastic volatility models. Still, the Realized GARCH
model is an observation-driven model that permit straight forward estimation by the
maximum likelihood. Third, the measurement equation in our model does not require
the realized measure to be an unbiased estimator of the daily volatility. Unbiased
estimators are difficult to obtain because high-frequency data is only available for a

fraction of the day. Market microstructure noise that is not properly accounted for, see

Tn the Heston-Nandi GARCH model (Heston and Nandi (2000)), volatility is filtered through return
data and a closed-form pricing formula is provided.



Hansen and Lunde (2006), can also induce bias in realized measures. In contrast, the
HARG model requires an unbiased estimator, and assumes that a rescaling of the
realized variance (based on the trading hour’s information) achieves this objective.
Fourth, the model operates with distinct leverage functions for returns and realized
variances. The importance of this flexibility is documented in Hansen et al. (2016) for
the pricing of the CBOE volatility index (VIX). Fifth, the log-linear specification avoids
many of the constraints that often must be imposed to guarantee positivity of the
volatility process. Taking the logarithm also serves to reduce the impact of outliers in
the realized measure of volatility. This transformation makes the model more stable,
especially during periods with high volatility of volatility.

A quasi closed-form option pricing formula is very hard to obtain for a non-affine
model, using the standard method based on the moment-generating function and the
inverse Fourier transformation. When a closed-form expression is unavailable one can
resort to Monte Carlo methods, see e.g. Corsi et al. (2013) and Kanniainen et al.
(2014). While this method is straight forward to apply, it can be very time consuming
to achieve a desirable accuracy. This makes analytical approximation methods an
attractive alternative. For GARCH-type models, including non-affine models, Duan
et al. (1999) and Duan et al. (2006), developed an analytical approximation method
that is based on a Gram-Charlier series expansion, which is closely related to the
Edgeworth expansion used in this paper. The basic idea is to expand the density of the
cumulative return with its first four moments and a standard normal density. Although
the closed-form pricing formula is not available, moments of the cumulative return can
be calculated with analytical formulas. Compared to the Monte Carlo simulation, an
analytical approximation is much faster in practice and free of sampling errors, but can
suffer from approximation error. In our Realized GARCH framework, the
approximation error is indeed problematic for the Gram-Charlier based method of
Duan et al. (1999). We therefore derive an analytical approximation method based on
an Edgeworth expansion, which performs much better in simulations and empirically.

Gram-Charlier and Edgeworth expansions are similar, which may explain that Gram-
Charlier is sometimes incorrectly labeled as Edgeworth. This mislabeling is used in
much of the related literature, including Jarrow and Rudd (1982), Duan et al. (1999)
and Duan et al. (2006). Despite their similarity, the two expansions employ different
truncations which results in different properties.? Cramér compared the two expansion in
a series of papers, and deemed the Edgeworth expansion to be superior, see e.g. Cramér
(1946). Formally, when a Gaussian distribution is employed as reference distribution,
Blinnikov and Moessner (1998) show that the Edgeworth expansion achieves a better
approximation for near-Gaussian distribution, and Eggers et al. (2011) highlights how
poorly the Gram-Charlier expansion is at approximating a symmetric Normal Inverse

Gaussian distribution, while the Edgeworth expansion performs well.

2The density of a sum of n random variable may be approximated by an truncated expansion involving
a reference density. The order of the Gram-Charlier expansion is defined from the number of included
derivatives of the reference density. F. Y. Edgeworth observed that successive terms are not of decreasing
order of magnitude in terms of powers of n. Sorting and collecting terms with the same power of n, nt/?,

n2/2, ..., and including all terms up to order n*/? defines the Edgeworth expansion (of order k).



There are three common approaches to estimating an option-pricing volatility
model.> The first approach is to estimate the volatility model for returns, e.g. by
maximizing the log-likelihood, see e.g. Christoffersen et al. (2003), then estimate equity
risk parameters by no-arbitrage conditions. For a GARCH-type model, which has a
single shock, the equity risk premium parameter may be identified by matching
expected return to the risk-free rate (under the risk-neutral measure). This approach to
estimation is not directly applicable to the Realized GARCH framework, because it has
two separate shocks and it would require an additional moment condition to identify
both the equity risk premium parameter and the volatility risk premium parameter. A
second approach to estimation in this context, is to directly target option pricing, and

4 see e.g. Heston and

estimate all parameters by minimizing the option pricing error
Nandi (2000). This method obviously delivers the best in-sample fit in terms of option
pricing.  However, it tends to result in absurd parameter estimates and large
out-of-sample pricing error. A third estimation approach is to maximizing a joint
"likelihood", where parameters are estimated to explain underlying time series, (e.g.
returns and realized measures) as well as observed option prices.’ (see Christoffersen
et al. (2014) etc.). This method, that entails a trade-of between fitting the underlying
time series and option prices, has received increasing attention in the option pricing
literature.

In this paper, we conduct an extensive empirical analysis with a large panels of
option prices. The data set spans fourteen years of which twelve are used for in-sample
estimation and two years are used for out-of-sample evaluation. We consider a range
of distinct models in our comparisons, including the Heston-Nandi GARCH by Heston
and Nandi (2000) (which is commonly used benchmark model); two linear asymmetric
models: NGARCH (Engle and Ng (1993)) and GJR-GARCH (Glosten et al. (1993));
a log-linear asymmetric model: EGARCH (Nelson (1991)) and the recently proposed
GARCH model with realized variance: GARV (Christoffersen et al. (2014)). The main
conclusion is that the use of realized measures greatly reduces option pricing errors,
and our Edgeworth-based pricing formula in conjunction with the Realized GARCH
model has be best out-of-sample performance. For instance, the Realized GARCH model
reduces the out-of-sample pricing errors by 18.9% on average, relative to those of the
GARV model, and by 22.3% or more relative to all other models in our comparison.
For option based parameters, the two figures are nearly 30%°. Those results highlight
the empirical gains on a non-affine model with separate leverage effect and reinforce the
existing literature on the importance of including realized variance into option pricing.

The remainder of this paper is organized as follows. In Section 2, we provide a brief

introduction of the Realized GARCH model and the corresponding risk neutralization

3See Christoffersen et al. (2013) for a detailed explanation.

4Usually in terms of the difference in implied volatility or other equivalent measures such as the Vega
weighted pricing error.

5QOr fitting error for other Q-measure series such as the volatility index (see Kanniainen et al. (2014)
etc.).

5The provided out-of-sample results are based on the extended 2 years of option data. We also provide
an alternative out-of-sample comparison with Thursday data (parameters are estimated with Wednesday
data, see main text for details), and the four figures are 4.3%, 14.2%, 10.9%, and 18.1%.



procedure. In Section 3, we discuss how to price European Call options with an analytical
approximation. Special attention is paid to the expansion where the proper terms for the
Edgeworth expansion are derived. In Section 4, we present all the competing models used
in our comparisons. Empirical results are presented in Section 5, where we compare the
models, both in-sample and out-of- sample, and with a variety of estimation methods.
Pricing performance is evaluated at the aggregated level and for different subcategories in
terms of the moneyness, maturity and volatility index level. The final section concludes

and provides two directions for further research.

2 The Model

2.1 Realized GARCH model

The Realized GARCH model we adopt in this paper is given by:

re1 = 4+ A hepr — 3hiet + Vg2, (1)
loghiy1 = w+ Bloghy + 1z + (27 — 1) + youuy, (2)
logmt = f + qSlog he +dize + dg(zf — 1) + oy ug, (3)

where z; and u; are independent standard normal random variables. This is the variant
proposed by Hansen and Huang (2016) that has an explicit leverage term in its GARCH
equation (2). See Hansen et al. (2012) for additional variants of the Realized GARCH
model. Hansen et al. (2016) model the CBOE VIX with this model and find that an
additional leverage term in addition to the realized variance can deliver a better fit and
forecast of the physical dynamic of S&P500, the risk neutral dynamic of VIX, and the
volatility risk premium (measured by the different between the two).

This model ahs two characteristics that are attractive in the present context for option
pricing. First, the Realized GARCH model shares a key feature of stochastic volatility
model, in having an innovation term, u;, that relate directly to volatility, but the model
is much easier to be estimated, because it is an observation driven model. Second, the
Realized GARCH model, as formulated above, has fewer parameter restrictions than
related discrete time models that also utilize realized variance in option pricing. This

also simplifies the estimation.

2.2 Risk neutralization

To derive the option pricing formula, we need to find the model dynamics under the
risk neutral measure. The following exponentially affine stochastic discount factor (SDF)

is used for risk neutralization,

112 U2
7o eXP(Ul,tZt+1 + v2,tut+1) _ 1,t 2t
t+1 = =exp | V1241 T V2tUt+1 — 5 — 5 |
E(eXp(’ULtZH_l + vz,tut+1)) 2 2

where z; and u; are independent standard normal random variables.
This specification of risk-neutralization has also been adopted in option pricing models

using realized variance, such as those of Corsi et al. (2013), Christoffersen et al. (2014)



and Majewski et al. (2015). Such specification of risk-neutralization degenerated to the
locally risk-neutral valuation relationship (LRNVR) of Duan (1995) when u; = 0.
Let R¢+1 = yt+1 — y¢. The non-arbitrage condition, E?(exp(RtH)) = exp(r), yields

E@(exp(Riy1)) = Ei(Zes1exp(Ris1))

= exp(r + A/ his1 + v17/ hep1) = exp(r),

with the implication that

V1t = —A.

Therefore, the risk neutral moment-generating function is

Ef (exp(sizep1 + s2uih1)) = Ei(Zer1exp(sizer1 + s2ups1))

si | 53
= exp | —S1tA+Ssva+ -+ = |-
2 2
This implies, that we under the risk neutral ?-measure have

*
Zipl =zt A

*
U1 = U4l — V2¢-

Here, we set vo; = x and assume it is time invariant to ensure that the model is also
affine under the risk neutral measure.

Hence, the dynamics under the ()-measure is

r1r = 1 —3h + Vi, (4)
loghiy1 = w+ Bloghy +71(2f — A) + 12((zf = A)? = 1) +v0u(u; +x),  (5)
logzy = &+ @loghs +di(zf — A) +da(((zf —A)? = 1) +ou(u; +x),  (6)

where z; and uj are independent standard normal random variables.

When we estimate the model under the Q-measure, the effective model is

rep1 = 1 — shepr + Vh 2
loghiy1 = w*+ Bloghs +711(zf — N) + 1((zF — N2 = 1) + youul,
logzy = & 4 ¢loghs +di(zf — N+ do((2f — N)? = 1) + ouu}.

Note that if we estimate the model with option data based nonlinear least squares, the
variance o, cannot be identified and the effective number of parameters is reduced by 2.
When our model is estimated with the joint estimation, the likelihood of the underlying

time-series helps to identify o, and x separately.



3 Analytical Approximation of a European call

3.1 Edgeworth expansions

The Realized GARCH model does not have an analytical formula for the moment
generating function. That means the conventional explicit pricing formula via Fourier
inverse transformation is not applicable. Instead, we use an analytical approximation
method to calculate the option price. The more straightforward Monte Carlo simulation
method is not used because we want to calibrate key parameters with the large scale
option data set. The Monte Carlo method does not provide a good foundation for this
task as it is less time efficient and subject to substantial sampling errors.

To get the formula, we expand the density of the cumulative return using the following

second-order Edgeworth expansion.”

(k4 —3)

/<,32
L H(z) + S Ho(2) | 0(2)

K3
=1+ 2H
9(2) = |1+ 2 Hy(2) + =

6

where ¢(z) is the density function of the standard normal distribution, and H,(z) is the

n-th order (probabilist’s) Hermite polynomial, given by

H3(z) = 23-3z,
Hy(z) = zt—622+3,
Hg(z) = 2%—152% 4452 —15.

The Gram-Charlier expansion, used in Duan et al. (1999), employs a different truncation,
2

K
)

Gram-Charlier expansion to be inadequate in the present context. To illustrate this point,

which causes it to exclude the term, =2 Hg(2), from the expression above. We find the
we use parameters estimated for the Realized GARCH model from Table 3 to calculate
the analytical approximation of moments for 90 days horizon. Those moments are then
used to compute the analytical approximations to cumulative returns. Additionally,
we conduct a Monte Carlo simulation to calculate the corresponding empirical density.
Those two densities are plotted in Figure 1. We provide the corresponding results for
the conventional EGARCH in Figure 2.

[Insert Figure 1 and Figure 2 here|

From Figure 1 it is evident that the approximation based on the Gram-Charlier
expansion is inadequate for the Realized GARCH model. A significant improvement is
obtained by using the Edgeworth expansion instead. From Figure 2 we observe the that
Gram-Charlier performs reasonably well in this design where the underlying model is the
EGARCH model, although the Edgeworth expansion continue to be a bit more accurate.
A key difference between these the Realized GARCH model and the EGARCH model,

"The Edgeworth expansion is designed to approximate the distribution of the standardized sum
of ii.d. random variables S, = >0  (Xi — pe)/v/no2. A Taylor expansion of the characteristic
function of S, yields the following first three terms of the expansion are: ¢(z), @ Hs(2)¢(2),

(“473H4(z) + %Hdz)) ¢(z), where k; is the i-th moment and ¢(z) is the pdf of the standardized

24
normal distribution.



is that the former has an additional innovation shock — the volatility shock u. This
shock has important implication for the distribution. For instance it generates fatter
tails which the Edgeworth expansion does a better job at capturing. For this reason we
will deduce the option price approximation from an Edgeworth expansion, rather than

the Gram-Charlier which is commonly used in this literature.

3.2 Pricing formula

Under the risk neutral measure, the European call option price is given by:
e "TEQ (max (St — K, 0)).

Let Ry = log(St/So), as shown in the appendix, the expectation can be written as an

integral of the standardized cumulated return zp = (R — p)/o:

k
erT/ [Soexp (u—oz) — K| g(z)dz,

—0o0

where k = (log(So/K) + p)/o and §(z) = g(—z). By inserting the expansion formula

and integrate we obtain the pricing formula given in the following Proposition.

Proposition 1. The price of a European call option associated with the Realized GARCH

model can be expressed as

Capprox =C+ k3As + (R4 — 3)A4 + H%AG, (7)

C = Se®(d)— Ke " T®(d—0),
Ay = %soe&fa (20— d) 6 (d) + 0P (d)] ,

Ay = S [(d— 1= 30 (d - 0)) 0(d) + 00 (d)].
Ag = %Soe&’a [0°®(d) + (3 — 64 + d* + 50 (d — (d — 0)(0d — 2) — (d — 0)%)) $(d)] ,
g = leS/K)tp

where k; = Eg(z%)
Proof. See appendix. O

To calculate option price from (7), we need to calculate the first four moments of
the standardized cumulative return. Since equation (1) provides the non-standardized

return, it is more convenient to express s; and in terms of E(?(RZT):

s = % B§ (R}) -] =38 = % S (Rf) — '] =22 (205 +35).

The evaluation of E(? (R%) is given in the appendix.



4 Competing Models

Five competing models are considered: EGARCH, NGARCH, GJR-GARCH, HN-
GARCH and GARV. Except for the EGARCH model, all models are linear. Apart from
the HN-GARCH and the GARV model, no models have explicit pricing formula. Only
the GARV model utilizes realized variance as additional underlying information. Table
1 provides an overview of competing models. Due to the inclusion of realized variance,
the number of parameters is greatly increased compared with traditional GARCH-type

models.
[Insert Table 1 here]

More details of each competing model are listed below.

EGARCH

The physical dynamic of the EGARCH model is

repr = 7+ A higr — sl + Vi ze,
loghiy1 = Po+ Biloghy + Tz + 72 (Zt| - \/g) :

The risk neutral counterpart is

1
rep1 = T — shepr ezl

loghit1 = Po+Biloghy + 11 (2 — A) + 72 <|Zt — A - ﬂ)
The persistence parameter under both measures is identical.i.e. 7 = 79 = f.

NGARCH

The physical dynamic of the NGARCH model is

rpr = 1+ A her — shiga + Vi zga,

hiyi = o+ Bihe +ihs (2 — )2

The risk neutral counterpart is

rep1 = T — %ht+1 + V1241,
hiv1 = Bo+ Bihe +Tihe (27 — (12 + N))2.

The persistence parameter is 78 = 51 + 7 (1 + 722) for the physical measure and 79 =

B1+ 11 (1 + (12 + )\)2> for the risk neutral measure.



GJR-GARCH

The physical dynamic of the GJR-GARCH model is

rep1 = T+ A g1 — shi + Vhze,

hiv1 = Bo+hy [51 + 71122 + 7 max(0, fzt)Q] .

The risk neutral counterpart is

res1 = 17— shepr + Vgl
hivi = Bo+ hy [ﬁl + 7'1(Zt — )\)2 + T2 maX(O, —(Zt — )\))2] .

The persistence parameter 70 = 81 + 7 + 3 for the physical measure and 79 =6 +
(11 + 12P(N)) (1 + )\2) + 72 Ap(N) for the risk neutral measure.

HN-GARCH

The physical dynamic of the HN-GARCH model is

revr = r+ (A= 3) g1 + V12,
2
hiv1 = Bo+Bihe + 7 (Zt*TQ\/h7t> .

The risk neutral counterpart is

resr = 1 — she + ezl
. 2
hiyi = Bo+ Pl + 7 (Zt — (2 + ) \/ht) :

The persistence parameter is 77 = 31 + 7175 for the physical measure and 7@ = B +

71 (A + 72)? for the risk neutral measure.

GARV
The physical dynamic of the GARV model is
_ 1) 7, 7
ri1 = 4+ (A= 3) b1+ hes1ze41,
hipr = whity + (1= r)R{,
—\ 2

hﬁl = w+ﬁhf+7’1 (Zt—TQ\/ht) ,

RV, = hfY +ay [(et —doV ) — (1 + dgﬁt)} :
—\ 2

WY = €+ oh +di (e —dav/h)

where (z;,u;) follows a standard bivariate normal distribution with p,. = p. We also

introduce v = dy /as.

10



The risk neutral dynamics are

Tyl = T — %Bt-&-l + 1/ he+12141,
hey1 = kR + (1 —R)REY,

—\ 2
hity, = wi+Bibi+n <Zt—72*2 ht) ;

RV, = h +ay [(q A2V - (1 d§2ﬁt)] :

—\ 2
R = €+ oh{Y +dy (e — d3? V)

The persistence parameter for the GARV model is a vector. To make things simpler,

we define the persistence parameter as the maximum of the two persistence parameters

associated with hf* and RV, ie. 7F = B + 772k for the physical measure and 7@ =

B1 + 7172*2,% for the risk neutral measure.

5 Empirical Results

5.1

Data

The empirical comparisons are based on daily returns of the S&P500 index, the

realized variance as well as the daily option data®. As the realized variance starts at
200001 and the option data ends at 201412, we use the option data from 2000-2012 for

in-sample comparison and reserve 2013-2014 for out-of-sample evaluation. The option

data are trimmed using the following common method:

1.

7.

Keep option data on Wednesday (for in-sample) and Thursday (for out-of-sample)
only.

. Drop all options with zero (daily) trading volume and missing implied volatility.

. Calculate option price with the average of best bid and best ask and drop all options

with price less than 5 dollar.

. Drop all options whose time to maturity is less than 15 days or longer than 180

days.

. Drop in-the-money options and very deep out-of-the-money options (i.e. S/K > 1.3

or S/K <0.7).°

. Keep the six most liquid (in terms of daily trading volume) for every maturity in

each day.

Replace put options with call options using the put-call parity.

Table 2 provides an extensive summary for the number of contracts and the average

implied volatility within each subcategory in our option data set. Panel A summaries

data which will be used to estimate parameters. Panel B and C summarize data that will

8These data are collected from Yahoo finance, the Realized Library at the Oxford-Man institute, and
OptionMetrics from WRDS.
°In Corsi et al. (2013), deep out-of-momey is defined as S/K > 1.06 or S/K < 0.94.

11



be used to implement out-of-sample comparison. Following Christoffersen et al. (2014),
we use Black-Scholes delta to measure the moneyness of options. As we only keep out-
of-the-money options, those with deltas higher than 0.7 are deep out-of-the-money put
options. It can be seen that those options are relatively expensive compared with out-of-
the-money calls which display the stylized volatility smirk across moneyness. The smirk

pattern is more profound in recent years.

[Insert Table 2 here|

5.2 Estimation method

We estimate a model with joint likelihood of the observed time series and the pricing
errors, where the latter are weighted by the vega!®. Unlike traditional calibration method
focusing only on pricing errors, this approach also takes the model’s ability to replicate
underlying dynamics into account. The parameter to be estimated for option pricing
with the Realized GARCH model are given by:

@ - {A7w7ﬂ771772777€7 ¢7d17d270—u710gh17X70—e}

where o is the standard deviation of vega-weighted option pricing errors. With the data
{rety, rvt = 1,2,...,T} and {option;|i = 1,2, ..., N} the parameters can be estimated by

maximizing the joint likelihood function:

Lru(ret, vk, option; ©) = £, (ret; ©) + £, (rv; ©,ret) + Lo(option; ©, ret, rv)

where
T T 17 )2
B ) (rety — r — AVhe + 5hy)
b, = ——log (2m) — 5 E log(hy) — E o ,
t=1 t=1
T T d 4 (logrvy — & — ¢log hy — dyzg — do(27 — 1))?
b, = ——log(2m) log(o E L ,
2 202
t=1 t=1
N N Mod Mkt 2
N N ((PMod — pMELY /1;)
by = ——log(2m) — — g | g : .
’ 2 Og 7r 2 =1 Og i=1 20-3 7

where PZ»M"d and PiMkt are the model-implied option price and the market price,
respectively. The weighting-parameter, v;, is the Black-Scholes Vega that measures the
option’s sensitivity to implied volatility changes. (PZM od _ PlM kt) /v; is, therefore, an
approximation of the difference in implied volatility. From the first order conditions of
the likelihood, it follows that o2 is simply estimated by 4 ~ Zl 1 ((PMOd Pf\/”“t) /1/@-)2,
and we note that its square root, o, is identical to a term labelled vRMSE in
Kanniainen et al. (2014).

An alternative way to formulate joint estimation is focusing on the VIX index
instead of option price. We do not use this method because it ignores key information

for maturities other than 30 days (in our case, the maturity varies from 15 to 180).

0The analytical approximation (7) ensures that the Vega-adjusted option pricing error is free from
sampling error and therefore a well defined objective function.

12



Information on variance risk premium over different time horizons might not be fully
conveyed by the volatility index. Using a term structure for VIX might be a solution to
this problem. However, constructing the historical VIX term structure itself calls for
considerable effort.

We also calibrate models using the conventional nonlinear least square (NLS) method,
where only the £, is considered. Although both return and realized variance are used in
the calculation, their only job is filtering the latent volatility. The goodness of fit on both
series is irrelevant. Approximation formulas for EGARCH, NGARCH and GJR-GARCH
models are provided in Duan et al. (1999) and Duan et al. (2006). We follow their results

when options are priced under corresponding models'!.

5.3 Parameter estimations

Table 3 provides parameters estimated from both methods for all models considered.
Robust standard errors are in parenthesis. Likelihood function values and persistence

parameters of volatility dynamics are also provided.!?
[Insert Table 3 here|

The left columns are associated with joint estimation where fit of option price and
underlying dynamics are both taken into account. For the Realized GARCH model,
we have: 1) (3 close to one indicating a strong persistence of volatility dynamics; 2) a
significant leverage effect indicated by 71, 72, d1 and da; 3) ¢ close to 1, reinforcing the
idea that (3) is a measurement equation; 4) a significant contribution of realized volatility
through ~, indicating the importance of realized measures; 5) significant equity premium
(M) and volatility premium (x); 6) the smallest o, that is a measure of (v-weighted)
option pricing error.

We estimate the GARV model in two steps because the stationary constraint
presented in Christoffersen et al. (2014) cannot guarantee a positive w; and . First, we
estimate the model with the constraints used for NLS estimation to make sure that the
volatility is positive. Second, we re-estimate 77 and 75 with stationary constraints.!3
As parameters 71, T2, 77 and 75 driven to their limits (almost to the boundary defined
by the constraints), the volatility risk premium is very small and the o, is a little larger
than the Realized GARCH model. Models without realized measures all have
significantly larger option pricing error, as defined by o.. We also find that 7% is
generally larger than 7%, which confirms findings in the option pricing literature that

volatility is more persistent under the risk neutral measure.

"Kanniainen et al. (2014) use NGARCH and GJR-GARCH with NLS estimation where price is
calculated using a Monte Carlo simulation. This method is slow and can generate different prices for
the same option even with the same set of parameters (due to sampling error) without holding the seed
of the random variable generator constant.Therefore, we use approximation method instead.

12For joint estimation, the persistence parameters under the physical and risk neutral measures are
provided. For option-based estimation, only the risk neutral persistence parameters are provided.

13We would like to thank Peter Christoffersen for his kindness in sharing with us the NLS estimation
code for the GARV model. We also estimated the model with NLS constraints on 71, 72 and stationary
constraints on 71, 75 together. Although this method can improve o, it delivers strangely small 71,72
and significantly larger out-of-sample o. (probability due to in-sample over-fitting).
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The right columns are associated with NLS estimation where the objective solely
focuses on fitting option price. This empirical results with this estimation method leads
the the following observations. First, the persistence parameter is larger than that
obtained with joint estimation. Second, the parameters in the Realized GARCH model
are substantially different, such as those related to the leverage effect (significantly
more asymmetry) and 7 (now smaller), which measures that impact that the realized
measure has on volatility. We also observe that the estimated ¢ in the measurement
equation now differs substantially from unity. For the GARV model we now estimate
the correlation between two shocks to be one. Some of this estimates are obviously
unrealistic, but are chosen by the NLS procedure because these values help minimize
the in-sample option pricing errors. Third, the Realized GARCH model outperforms
the other models. Perhaps impressively, the Realized GARCH model with joint
estimation does better than the GARV model with NLS estimation in terms of
IVRMSE.

It is worth noting that the QMLE estimation method used for the GARV model
assumes that the return and realized variance follows a bivariate normal distribution,
which is clearly at odds with reality. The values of the likelihood functions of the Realized
GARCH model and the GARV model are therefore not directly comparable.

5.4 In-sample pricing performance

Table 4 provides detailed in-sample pricing performance for both methods. From
here on, we evaluate the model’s pricing performance through the root mean square of
implied volatility (IVRMSE):

=

1 o 2
IVRMSE = | ; [TV Med — TVMELS % 100,

where [ V;»M °d and I VL»M kt are the Black-Scholes implied volatility of option i calculated
with the model price and the market price respectively. The total IVRMSE shows the
same patten as o, in Table 3. Here, we decompose the total IVRMSE into subcategories
according to three different characteristics. The first is the moneyness, which is linked
to the model’s ability to generate enough leverage effect. The second is the time to
maturity, which is linked to the model’s ability to track long-run dynamics. The last
characteristic is the contemporary volatility index level, which is linked to the model’s
ability to generate enough variance risk premium. The left columns are results from joint

estimation and the right columns are results from the NLS estimation.
[Insert Table 4 here|

Joint estimation

The total IVRMSE shows that the Realized GARCH model has the smallest pricing
error and the GARV model has a slightly higher (2.8%) pricing error. The NGARCH
and GJR-GARCH models have comparable pricing error, followed by the Heston-Nandi
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GARCH model. The EGARCH model has the worst pricing performance. The fact that
all models without realized variance have significantly higher IVRMSE highlights the
importance of realized measure in option pricing. In subcategory comparison, we still
confirm that the Realized GARCH model does a better job in most cases.

It is interesting to compare the Realized GARCH model to the GARV model, which
also utilizes realized variance. The Realized GARCH model performs better on deep
out-of-the-money options. The GARV model has better performance when the option is
less out-of-the-money. This result might be caused by the fact that key parameters of
leverage in the GARV model (7;, 7) are limited by the positivity constraints. The
Realized GARCH model has better performance at shorter maturity while the GARV
model does better at longer maturity. One possible explanation is that the GARV
model has the structure of a component volatility model, that are known to excel at
modeling long-term volatility. The Realized GARCH model has better pricing ability
when the volatility index is higher and the GARV model works better when the
volatility index is lower. This can be explained by the fact that the log-linear
specification of the Realized GARCH model has an advantage to react to sharp
volatility changes through the exponential of logh. It can be seen that the EGARCH
model performs worse than all other models. This indicates that log-linear specification
needs accurate information on logh, or the measurement error will also be

exponentialized and severely jeopardize the model’s pricing performance.

NLS estimation

The NLS estimation yields similar results. The Realized GARCH model still
outperforms other models, with an 9.5% average improvement over the GARV model
and 21% (or more) improvement over methods that do not utilize realized measures.
Unlike in the joint estimation, the Realized GARCH model now outperforms the GARV
model at all moneyness subcategories and the relative performances across maturities

as well as volatility levels are improved.

5.5 Out-of-sample pricing performance

Because the Realized GARCH model has far more parameters than the conventional
GARCH models, one might worry that its superior in-sample performace is driven by
over-fitting of the data. To verify that this is not the case, we proceed with an out-of-
sample comparison.

There are several ways of performing an out-of-sample evaluation in the option pricing
literature. 1) Estimate parameters with the first several years in the whole sample, keep
the parameters fixed and value option prices in the following years (Christoffersen and
Jacobs (2004)). 2) Estimate parameters with a rolling window and value options for the
next day (Christoffersen and Diebold (2006)). 3) Use Wednesday options to estimate
parameters, keep the parameters fixed and value Thursday options within the same time
span (Christoffersen et al. (2010)).

In consideration of our sample size and the time consumption of parameter estimation,
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we use the first and the last methods in our paper:

1. THU2000-2012: Estimate parameters using Wednesday data from 2000/1 to
2012/12 and calculate price for Thursday options from 2000/1 to 2012/12.

2. WED2013-2014: Estimate parameters using Wednesday data from 2000/1 to to
2012/12 and calculate price for Wednesday options from 2013/1 to 2014/12.

The first method is not exactly a full out-of-sample method as it involves underlying
information from future trading days. It is considered out-of-sample because options in
Thursday are not used when minimizing the pricing error. The second method is a full
out-of-sample method, as neither options nor underlying information are used during the

out-of-sample period.

[Insert Table 5 and 6 here]

Joint estimation

Table 5 provides results based on joint estimation parameters. The left columns are
associated with Thursday pricing performance and the right columns are for Wednesday
pricing performance.

Because model parameters are estimated with information from the future when
we value Thursday options, this comparison is similar to an in-sample fit. The only
difference is that the Realized GARCH model has even better relative performance for
some subcategories than was the case before. Now the Realized GARCH model also
outperforms the GARV model at medium volatility levels, some longer maturities, and
less deep out-of-the money options.

For Wednesday pricing performance (the pure out-of-sample period), we find that
models with realized measures still have better performance. Improvement of the
Realized GARCH model is very significant over other models: an 18.9% IVRMSE
reduction compared to the GARV model and at least 22.3% IVRMSE reduction
compared with other models. For subcategory comparison, the relative performance of
the Realized GARCH model and the GARV model are quite different compared with
in-sample and Thursday out-of-sample cases. We find that the Realized GARCH model
has better performance than the GARV model over most moneyness and longer
maturities. The GARV model has better performance than the Realized GARCH

model when the volatility index level is high.

NLS estimation

Again, the NLS results shown in Table 6 confirm what we get from the joint
estimation. For Thursday pricing performance, the Realized GARCH model is better
than the GARV model with 10.9% total IVRMSE reduction and dominates other
models by at least 18.1% total IVRMSE reduction. The GARV model still outperforms
the Realized GARCH model in the longest maturities and one low volatility level while
the Realized GARCH model works better for the rest of the cases.
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For Wednesday pricing performance, the Realized GARCH model is still the best
with 30.7% reduction over the GARV model and at least 29.4% reduction over other
models in terms of total IVRMSE. We also find slightly larger IVRMSE for the Realized
GARCH, GARV and NGARCH models which indicates a possible over-fitting for the
NLS method. For subcategories, the Realized GARCH model outperforms the other
models in most cases. Compared to the GARV model, the Realized GARCH model has
better performance over all moneyness groups, maturities over 30 days, and low volatility
levels. This result is slightly better than the case in joint estimation where the GARV
model beats the Realized GARCH model in five instead of three subcategories.

6 Conclusions

In this paper, we provide an Edgeworth expansion based analytical approximation
option pricing formula for the Realized GARCH model. Unlike existing option pricing
models that utilizes realized measures, our model has a non-affine exponential GARCH
model structure.

We have pointed out that existing approximations for GARCH models, that are
labeled "Edgeworth" are in fact Gram-Charlier approximations. Fortunately, the
Edgeworth expansion we have derived for the Realized GARCH model is directly to
GARCH models, by using the proper moments, as derived in Duan et al. (1999).

We have used and compared two estimation methods. A nonlinear least squares
method whose objective entirely focuses on option pricing, and joint likelihood estimation
method that simultaneously fits the dynamic properties of the underlying time series in
conjunction with option prices. We compare models and estimation methods in terms of
their empirical option pricing performance — in-sample as well as the out-of-sample. While
the nonlinear least square method, in some cases, has competitive option pricing errors
in terms of IVRMSE, some of the parameter estimates it produces are unrealistic, which
leads us to prefer the joint likelihood-based estimation method. One clear conclusion
that emerges from both in-sample results and out-of-sample results, is that the inclusion
of realized measures in this context is highly advantageous for the option pricing. The
Realized GARCH model has the best performance on average.

Our analytical and empirical results suggests some directions for further research,
which might first enhance the option pricing performance of the Realized GARCH model.
One could introduce Heston-Nandi terms into the Realized GARCH model, with the
objective of obtaining a a close-form option pricing formula, thereby avoiding the need for
approximations. Another possible direction for future research is to pursue a component-
type structure of the Realized GARCH model, which might improve its option pricing
performance at longer horizons. Finally, it would be interesting to study whether the
use of our Edgeworth approximation, brings an important improvement over the existing
Gram-Charlier approximation for conventional GARCH models. This was our experience
for the Realized GARCH model, but Figure 2 suggest that the gains may be more modest
for conventional GARCH models.
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Figure 1: Simulated density vs analytical approximation for the Realized GARCH model.
Left: Edgeworth, Right: Gram-Charlier
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Figure 2: Simulated density vs analytical approximation for the EGARCH model. Left:
Edgeworth, Right: Gram-Charlier

Table 1: Model Characteristics

Model Parameters(P/Q) Underlying E Premium V Premium Spec. Closed Fc
RG 12/10 Ret + RV Yes Yes Log-linear No
GARV 10/10 Ret + RV Yes Yes Linear Yes
EG 5/5 Ret Yes No Log-linear No
NG 5/4 Ret Yes No Linear No
GJR 5/5 Ret Yes No Linear No
HNG 5/4 Ret Yes No Linear Yes
E premium = Equity premium. V premium = Volatility premium. Spec. = Specification. Ret = Return.

RV = Realized variance. Close Form = close form pricing formula. The parameter o, is not included in the count, because

the weighted option pricing error.
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Table 2: Option data set summary

Panel A: Wednesday: 2000-2012

Delta

<0.3

0.3—0.4

0.4-0.5

0.5—-0.6

0.6-0.7

>0.7

Total

<30
369
(0.199)
372
(0.178)
406
(0.184)
550
(0.192)
514
(0.204)
989
(0.249)
3200
(0.210)

30—60
549
(0.186)
322
(0.183)
443
(0.200)
662
(0.200)
579
(0.215)
1523
(0.251)
4078
(0.218)

Panel B: Thursday: 2000-2012

Delta

<0.3

0.3-0.4

0.4-0.5

0.5-0.6

0.6—-0.7

>0.7

Total

<30
270
(0.190)
242
(0.169)
297
(0.182)
357
(0.188)
342
(0.207)
750
(0.248)
2258
(0.208)

30—60
535
(0.182)
331
(0.184)
420
(0.191)
669
(0.200)
606
(0.214)
1511
(0.253)
4072
(0.217)

Panel C: Wednesday: 2013-2014

Delta

<0.3

0.3-0.4

0.4-0.5

0.5—-0.6

0.6—-0.7

>0.7

Total

<30
196
(0.109)
175
(0.109)
188
(0.116)
172
(0.128)
197
(0.138)
503
(0.159)
1431
(0.134)

30—60
246
(0.103)
137
(0.113)
159
(0.120)
168
(0.130)
132
(0.139)
656
(0.172)
1498
(0.142)

60—90
548
(0.180)
265
(0.186)
382
(0.195)
692
(0.209)
545
(0.217)
1502
(0.252)
3934
(0.219)

60—90
563
(0.178)
300
(0.186)
379
(0.195)
670
(0.204)
516
(0.220)
1456
(0.250)
3884
(0.217)

60—90
146
(0.111)
59
(0.119)
73
(0.127)
130
(0.138)
80
(0.148)
410
(0.185)
898
(0.154)

Maturity
90—120 120-150
434 240
(0.182)  (0.177)
246 123
(0.200)  (0.191)
261 109
(0.208)  (0.202)
444 192
(0.227)  (0.222)
417 214
(0.237)  (0.223)
1059 588
(0.263)  (0.244)
2861 1466
(0.231)  (0.219)

Maturity
90—120 120—-150
410 249
(0.185)  (0.177)
227 118
(0.205)  (0.189)
256 114
(0.208)  (0.198)
494 188
(0.221)  (0.219)
377 207
(0.244)  (0.223)
1002 574
(0.263)  (0.245)
2766 1450
(0.231)  (0.219)

Maturity
90—120 120—-150
143 92
(0.114)  (0.116)
66 32
(0.123)  (0.128)
86 43
(0.133)  (0.136)
93 47
(0.139)  (0.146)
98 52
(0.153)  (0.161)
401 201
(0.189)  (0.192)
887 467
(0.157)  (0.160)

>150
225
(0.176)
98
(0.194)
122
(0.204)
200
(0.217)
217
(0.224)
480
(0.243)
1342
(0.218)

>150
213
(0.178)
117
(0.189)
106
(0.203)
183
(0.214)
211
(0.225)
525
(0.244)
1355
(0.219)

>150
87
(0.118)
33
(0.132)
39
(0.139)
42
(0.148)
41
(0.163)
164
(0.198)
406
(0.161)

Total
2365
(0.184)
1426
(0.187)
1723
(0.197)
2740
(0.208)
2486
(0.218)
6141
(0.252)
16881
(0.219)

Total
2240
(0.182)
1335
(0.186)
1572
(0.194)
2561
(0.206)
2259
(0.221)
5818
(0.252)
15785
(0.219)

Total
910
(0.110)
502
(0.116)
588
(0.124)
652
(0.135)
600
(0.146)
2335
(0.178)
5587
(0.147)

Note: The number of options in each category is provided, average implied volatility is in parentheses.

19



"onfea pooyIeNI[-80] oy I j “Afoarioodsel ‘omseow [eInoU JSLI pue [eorsAyd topun 1ojourered oous)sisiod ore,, 1w pue 1 “s1soyjuered Ul OIe SIOLIO PIRPURIS JSNCOY :DION

1168°C 99¥1°¢ LTST'E  LFECY z819°C 819¢°C eyes e 9zee°¢ L86T°C  €LECF 7S89°C 81€9°C
0°6985¢ 9°0cFFe  T'EOPFE  ©8T06C  £86FLE  £9£T6E G 61ETh 6°8G2EY  6°9CTFE  9°6TS6E  T'STTL T RLOFF
9€66°0 Z¥66°0 07660  S¥R6°0 972670 92860 76670 92660 L8660 L¥S6°0 6£L6°0 96860
¢066°0 70960 LV66'0  L¥S6°0 L€26°0 96860

(6LL5°0) (1090°0)

L£99°LGL €eeT L¥S

(8010°0) FPFrT)

9TF0 LST ¥8€0°21C

(G0-AFS'T) (0100°0)

¥290°0 ¢6L0°0
(05T0°0)
8EFT0
(7£00°0) (6220'0)  (6010°0) (£2900)  (8P00°0)  (G650°0) (6810°0) (cre00)  (8L1000)  (670°0)  (22g00)  (£FF00)
TLIT6-  08L8°0T-  TOTT'S-  89¢G'8- €068 92006 9¢LG°8- L8CL6-  0SF0'8-  €L0G°8-  0EFSL-  $906°S-
(2000°0) (¢€00'0)  (¥€10°0)
0000°'T ¢F19°0 9009°0
(1220°0) (ov00'0)  (9%20°0)
1600 TELTLYS  S0LT0
(T1-1512)  (92480°0) (60-d22€)  (2020°0)
90-dELT  L866'T- 90-dIEE  GLEE0-
(60-dce's)  (LL80°0) (80-H067)  (¥510°0)
90-d80F  T9.9°0 90-d68C 709670
(€L¥2°0) (6,01°0)
620¥°¢- 81€6°0-
(€0000)  (2100°0) (9¢00'0)  (0200°0)
1691°0 0L20°0 0TF€0 6.70°0
(9£78°92) (1100'0)  (2¥20°0)  (4¥00°0) (8100°0) (z81L°9) (L100°0)  (1€80°0)  (9%0000)  (g612°1)  (¥100°0)
9878°E8T 68200 6170'c  SPOT0 1L20°0 TRLE 6V 91200 8I€0°C  TLOT'0  €60L°€0C  ©S00°0
(80-799'1)  (90-"0¢€)  (1000°0)  (21000)  (0T-E6SC)  (9100°0) (80-186'T)  (60-AF0°¢)  (1100°0)  (1100°0) (60-788'8)  (£100°0)
90-I€6'T  CO-HE0L  L€T0°0  THIT'O0-  L0-H98'6  6TTT0- 90-d6€'T  S0-USO'T  &Fc00  SEIT'0-  LO-AFF'9  9€1T°0-
(L610°0) (e200'0)  (F200°0)  (c000°0)  (900000)  (¥000°0) (2700°0) (60000)  (22000)  (5000°0)  (7000°0)  (€£000°0)
28¢6°0 1¥88°0 9180  S¥86°0 0€26°0 92860 0259°0 LVT6°0 90L8°0  L¥86°0 91L6°0 96860
(0%90°0) (2800°0) (¥00°0) (76.1°0) (9120°0)  (9100°0)  (1200°0) (1200°0)
06L9°T 7£50°0 0890°0 1221°C 61E7°0 9800°0-  86%0°0 96000
ONH uro ON RICI AIVD oYy ONH uro ON RICI AYVD oY

STIN uwonidQ UOTYeWIISH JUIof

00T X °0
J

Ty Sop
Q\:b
ep

p

L

1L

ZT102-000¢ TUOTJeUII}S 1ojoulered ¢ o[y,

20



XIA>GE
GE>XIA>0E
0E>XIA>4C
GC>XIA>0C
0C>XIA>ST

GI>XIA

[9A97 XIA Aq pouonjired i) [pued

INLA>04T
0ST>IN.LA>0cT
0¢T>IN.LA>06
06>INI1d>09
09>INLA>0¢€
0E>INLA

Aymye]N Aq pauonipreJ ¢ [oued

BIPA>L0
L°0>®Pd>9°0
9°0>®ed>4"0
¢0>eed>7v0
7'0>®Pd>¢"0

€0>®ed

SSOUADUOTN AQ PoUONIIR] 1Y [oURJ

86G8°'G  L0SE'G 6E8T'G 9G99¢°L  0086'F  96L6'€E qehe'9 0V6C'9 80TC'S T6LE'L 89ST'G  LTEET
L20z'€ ¥00TT 068¢F ¢OTF'S GL6ST  S|¥CE €IVCe ¥669F T6EST O6LIF'C  TLGST  €89F'€
06€0°€  TLOL'E €9TL'€ ¥8TLTV LIGT'E 6108C Cece'e VITL'€ TGL6'E G6TLT  WRYF'E  6EIT'E
7968°C GET0'E GSST'E 0668°€ SVEV'GC  ¥E6SC 968G°€ LLT8'C TOOF'E TS68°€  €C19C  899L°C
1308°C  L¥g6'T  LIS6'T GTET'S 60991 67981 LGER'T TLG6'T L60T'C GVET'E  TE€E9T  T6SCC
LGLT'C 6886'C L996'C L0L8'C TGL6'T  868L'T 9LFE'E T066'C OFIGT 09G8'C LI9E9T RELS'T
6LV7'E  L6ET'S F8E0'E 6L6LT 9V0€T  €0V6'C L916'C  9EVV'E  €PLTE €L6LT  SPP9'T  000T°€
9190'¢ 9996’ 0ST6'C ¥89GV CI19C  LLI9C 6ETT'E F90T'E FOLO'E T69GF 99€L'C  LIES'C
6060°¢ T6T0'C TFR0'E €SG8FT  9¥0SC  8GTEC 686T°C 0FLC'E 8LST'E CL8F'T  €L8G'C  6RILC
8ETIRC LLOT'E GT60'E 0L80F 66VS'C €TLIC T98€'€ €98Z'¢ T0ST'E G980F T0T9C T8T9'C
€ETT'E 8E6T'E 008E'€ G886'E  0EE6'C  6IFFC COPR'E  LT6E'EC €69€°€ L6S6'E  6VE6'T  €L0L°C
C9LG°E T6EV'E FR0G'E F9G9°€  901C'E€  0€T8'C T69EV  TOVV'E TPOS'E 6FS9E  TS9TE  G66LT
€900 8E8T'E 899E'E €ELOT  TSOT'E  9L65°C 8CFG'E 8T6C'E 0GES'E €980F 68L1°€  CILSC
TLL8°C L8V0'€ GLVO'E SVIF'E  LE9V'C  91¥TC 862S°€ €FPC’E 0061°€ CSGSH'E  ¥SIV'C  0SFPC
10¥9'c 0820'€ L900'¢ ¥8¥0'€ 0L8C'C GICT'C 9CT¥'€ LSIT'E ¥RET'€ 8TG0'E  8%9C'C  90TF'C
GZ89'C T0T0'C 8¥L6'C TI0T'€  L60ET  6LSI'C 6LGG°¢ GEIT'E 0GL6'C TT60'€ 696ETC  6LSVC
9L98°C 89¥C'€ LS0T'E €616'C 669ETC SETET aeyL'e 0607'€ TSPT'E TE06'€  T09SC  0069°C
L8LGT  TL6E'E ¥8SE'E TLOV'O  LGCT'E  CLIT'E 0Z0T7 0889'C 96£C'€ CL8E'9  LO0E'E 8TRTE
0€9T°¢ 9G6T°¢ OFICE 029TF 619L°C  9667C €CC9'C TBEE'E €F6TE €TITT  OVES'T  GEGL'T
ODNH dro HDN DI AYVD DY ONH dUro 9OHN DA AYVD DY
STIN wondQ UOTJRWII}SH JUIO[

HSINYALI [®30L

2102-000Z :(ASINYAT) #oueutiojad Sutotid ofdures-uf :j d[qe],

21



9641
9647°¢
0¥2¢9°¢

8CV6°'€
LGCS€
Geor'e
6677°¢C
¢4a6'1
9y16°1

0¥¥8°¢
€181
69€8°T
98761
Y0€6'T
968¢°€

0vLGC
ONH

GC8e'¢
Vriee
CLYLC

9896°C
€€C8C
8T79°¢C
0864°¢
G999°¢
926V°¢

7C68°T
9¢v0°¢
VI1GC
€L86°C
criee
9¢98°€

LG¥9°¢
qro

686€°C
9L1¢C'¢
Gcr9'c

88ILC
9009°¢
Ga9vc
TELV'C
¥6¢9°¢
0687°¢

GGLLT
[ZAN!
9807°¢
¢ST8'C
L6CC’€
867.L°€

8C1r§C
ON

eIvey
v6va€
¢G49°¢

9099°€
€e61°¢
0c10°€
GG86'¢
0746°¢
¥997°¢C

066L°¢
GRET'T
61081
6S1¥V°C
VIGT'E
8IVa'v

1T€6°¢C
OH

GLEGT  Geev'e
G6v0'c  LIVE'C
09G6L°¢  99€4'1
9.98°€ 6V.V'C
1SVPe  €906°1
9¢el’e  LaIv'l
G969'c  6ILE'L
61c0'c  G9TL'T
wr8T  0970°¢
61€T'E  090T¢
Lyvre 19991
GcLec  9e8Y'l
8LIC'C  CL8V'T
1296°T  999¥'1
8CL9'T  8IEI'T
1€69°C  €L6LT
AdVD DY

121679
9cre
6998°C
96€6°C
VriL'e
V8LEC

9L67°€
€180°¢
0L8T°€
0618°¢
8C4E€
0016°€

LIECE
1011°€
7089°C
71769°¢
G8IR'C
8L0¢7

1.9C°¢
ONH

90L¢°G
99.6°€
¢LOV'E
q160°¢
6CL6°T
€968°¢C

66€T°€
¥668°C
2L00°€
1L70°€
801¢'€
067¢'€

19¥¢°€
¥990°€
8616°¢C
€C68'C
¢ce0’e
€08T'€

220T°€
qro

00€T"G
LIGTY
GL6EE
LIvee
€7€0°C
¥€48°C

G870°€
1998°¢
Gc90'€
9¢60°€
199¢°¢
8GR8E€

T€EEE
GLLO'E
09€6°¢
6016°C
00€0°€
0L8T°€

IS AR
ON

904682
8¢E9°¢
0200
8EESV
128G9°€
VILLT

44Ny
LEVITY
€8CLY
€LYV
¥84Y'v
9Ly

G8¥.L°¢
¢C9C'e
(45101 4
¥9¢9°¢
CIIv'e
¢raca

T1L6V'Y
OH

6098
€496°¢
87L0°€
LCEI'T
LV0L° T
Lyve0'c

CLLSY
0156°C
898LC
€109°¢
VLI6'T
Gcos'1

XIA>GE
GE>XIA>0E
0E>XIA>4C
GC>XIA>0C
0C>XIA>ST

GI>XIA

[9A97 XIA Aq pouonjired i) [pued

X é
€G€9°¢C
¥6€4°C
1T€9°C
Gcer'e
crvse

¥€86°C
VrLSC
VLEEC
€C9T'c
6819°C
€1e6'c

INLA>04T
0ST>IN.LA>0cT
0¢T>IN.LA>06
06>INI1d>09
09>INLA>0¢€
0E>INLA

Aymye]N Aq pauonipreJ ¢ [oued

1v0C€
16979°¢
9C8C'C
676¢°C
G88EC
66¢C°€

€669°C
G9€EC
avare
G0cc'c
€ILCC
9€90°¢

BIPA>L0
L°0>®Pd>9°0
9°0>®ed>4"0
¢0>eed>7v0
7'0>®Pd>¢"0

€0>®ed

SSOUADUOTN AQ PoUONIIR] 1Y [oURJ

€948°C

varee

AdVD DY

V10C-€T0C-AdM

¢10¢-000¢-NH.L

HSINYALI [®30L

GIN uonnd() ((HSINYAI) @oueuntojrod Sumtid ojdures-Jo-in() :G o[qeq,

22



LG66°T
€8IEC
6V.V'C

y6v1€
9eve€
L9C8°¢
¢6LCC
0990°¢
V6T8'1

G9¢9°¢
€610°C
69¢0°¢
GLEDC
0676°1
¥4998°¢C

9cEY'C
ONH

LLLTT
9669°¢
1860°€

G9¢S'¢
649¢°€
9reET'e
¢re0'e
€8¢6°C
G099°c

G9€T°¢
769¢°¢
G006°¢
09.¢°€
€91L°€
96.E7

8L66°C
qro

8L8V'C
6€70°C
Lyee'e

290¢°¢
LITTC
¢0€0c
8901°¢
€80¢€¢
Srdad

78841
€844'T
65G96°T
068€°C
8€9L°C
L69¢°€

6.81°C
ON

VL€9°€
€LLG°€
LEVL'T

9,007
9¢67°€
V.CC'€
8910°€
6€08°C
8G9¢°C

€9L9°1
ST9¥'1
1€VCC
€0¢8¢
¥089°€
091¢°G

17L6°¢C
OH

CEGT'T  ¥68EC
98€9'T  T¥¥C'C
¢8¢C'C 0LV’
0766'¢c  €986°T
Gces'c  68¢a'l
LEOV'C  688C'T
V8¢’ 90L7'1
6CTL' T  6V8L'T
¢8EL'T  TGI6'T
6V87'¢c  8¢C6'1
SYI8'T  80LE'T
€EC8'T  LEGE'T
T98L°T  6CEV'T
61LL°T  ISIGT
8099'T  8VEL'T
0660'¢c 16691
AdVD DY

179€°L
81¢0°€
619¢°€
G6€9°€
7888°C
608T°€¢

LLE0°E
eorLe
GLYCE
Q91v'e
16€0°%
GEV9v

88¢L'€
8189°€
v9L€°€
7€94°€
6€09°€¢
9¢9T'v

€V0L°€
ONH

19¥¢°9
yovev
9LEV'E
€678°C
Vcl6'1
0L26°¢

EIIv'e
€690°€
089¢°€
197¢°€
084c'€
¢eel'€

6.7¢°€
88VC'€
LLeT€
6910°€
6ELT°€
€8LY'€

Vreee
qro

0881°G
Eyy
¥6€9°€
0L67°€
¢84T1C
6€CT'C

648¢°€
LE00°€
6V€C€
IwIire
€40¢°€
078¢°€

8€09°¢
V1€TE
¢040°¢
¢9¢6'C
97.L6°C
76¢0°€

86¢¢'€
ON

0656°L
GG60°'G
cIvsv
LIV6°€
80€C€
€€9L°C

V8ILY
CLLGY
¥697'v
GCcITv
LG86°€
G679°€

OTET¥
19¢4°¢
€8L6°C
¢6L0°€
6€98°¢
¢S89

98TV
OH

698G
¢cS86°¢
¢C0ge
0LL8°C
€899'T
6189°T

¢99LV
€L00°¢
6,91°€
946L°C
GG6C'C
68T

XIA>GE
GE>XIA>0E
0E>XIA>4C
GC>XIA>0C
0C>XIA>ST

GI>XIA

[9A97 XIA Aq pouonjired i) [pued

68€L°C
7948°C
9.84°¢
9264°¢
7990°€
v067°€

e6v1e
6€V.L°C
10L9°C
¥.8G°C
¢608°C
¥016°C

INLA>04T
0ST>IN.LA>0cT
0¢T>IN.LA>06
06>INI1d>09
09>INLA>0¢€
0E>INLA

Aymye]N Aq pauonipreJ ¢ [oued

88G¢C'€
G61G°C
991¢°¢
¥66¢°C
9¢484°¢
(U

¥92¢6°¢C
GLIV'C
¢617°¢
08€4°C
Vev9'e
89¢C'€

BIPA>L0
L°0>®Pd>9°0
9°0>®ed>4"0
¢0>eed>7v0
7'0>®Pd>¢"0

€0>®ed

SSOUADUOTN AQ PoUONIIR] 1Y [oURJ

G968°C

GcLL'C

AdVD DY

V10C-€T0C-AdM

¢10¢-000¢-NH.L

HSINYALI [®30L

uoryew1)se JuIof ((SINYAI) eoueuriojrod umuid sjdures-jo-jmn() :9 o[qe],

23



Appendix A: Proof of Proposition 1
Lemma 1. Let z follow the standard normal distribution. The integration
2
G(k,a,n):/ (z—0)"¢(2)dz

for any n € N and o € R satisfies the following iteration equations

G(k,o,n+2)=(n+1)G (k,o,n) — oG (k,o,n+1) — (k — )" ¢ (k)

G(k,0,0) = o (k)

G (ka g, 1) =—0? (k) - ¢ (k)
Proof. Integrating by part yields

k

G(k,o,n) = %H (k—o)" " 6 (k) + %H / (z—0)"¢(2)dz

—0o0

k
= +n11/ (z—0)"p(2)dz

—0o0

Multiplying (n + 1) on both sides, we have

(n+1)G (k,o,n) = (k—0)"" ¢ (k) + G (k,o,n +2) + 0G (k,0,n + 1)
Which can be rearranged as

G(k,oon+2)=(n+1)G (k,o,n) — oG (k,o,n+1) — (k— )" ¢ (k)

It is easy to see that G (k,0,0) = ® (k). For n =1,
k

k
G(k,0,1)= / (z—0)p(z)dz = / z2¢(2)dz — o®(k) = —¢ (k) — oP(k)

—00 —00

Proof outline of Proposition 1

Proof. By definition, we have Sp = Sy exp(Rr) = Spexp(u + 0z) so that
log(So/K)+
Sr > K & —z < 28202071 OU £,

So if we set k = {log(So/K) + p}/o the price of an European call is then:

k
e_TTE(? (max (S — K,0)) = e_TT/ [Soexp (u—0z) — K| g (2)dz,
—o0
where ¢ is the density of z, We approximate this density using the following 2nd order

Edgeworth expansion with a Gaussian reference density:

g(2) = {1 - S my(2) + B2 Hy(2) + B He(2) | 6 (2).
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where H3(z) = 2% — 32, Hy(z) = 2* — 622 + 3, and Hg(z) = 25 — 152* + 4522 — 15 are

Hermite polynomials. With this analytical approximation we have:
k k
e_rT/ (St —K)g(2)dz = e_TT/ [Soet ™7 — K] ¢ (2)dz  (A)
—0 —o0

k
e [ (S0 - K] B () ds - (B)

—00

k
4 ha8) e / [Soe" % — K] Hy(2)$ (2)dz  (C)
) k
"‘%em/ [Soet 7% — K| Hg(2)¢ (2)dz. (D)

The first three terms, A, B, and C, are derived in Duan et al. (1999), and the fourth and

last term, D, is derived next.
k
e_rT/ [Soet™7% — K| Hg(2)¢ (2) dz
—0oQ

k
= SoerT/ e 7% Hg(z)p(z)dz

—0o0

=D
k
_Ke'T / He(2)6(2)d=

—Dy
For Dy we have
—rT g 1 22 6 4 2
Dy = e exp(—7—02—i—u) (z — 152" 4+ 452 —15)dz
oo V2T
PT+% 4 b (z+0)2 6 4 2
= e T2 ——ex (—7) z° — 152" +45z“ — 15) dz
| e (-5 )
d
= 65‘7/ ((z — 0)® —15(x — o) + 45(x — 0)% — 15) ¢(x)dw,
—00

where 9§, d are given in Proposition 1. From Lemma 1, we have

D1 = € (G(d,0,6) —15G(d, 0,4) + 45G(d, 0, 2) — 15)
Dy = G(k,0,6) — 15G(k,0,4) 4 45G(k,0,2) — 15.

Collecting terms and simple algebra reveals that D is equal to:

2 50670 [020(a) + (3 6 ' 450 (4 (4~ 0)(od ~2) — ()" ()]
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Appendix B: Analytical results for the included terms
The moment of cumulative returns can be expressed as:

T

S
> (7“ — Shiti+ ht+izt+i)

=1

ES (Ry) = EY

—_

Expanding the formula, we have:
T
EY (Rr) = Tr—3}» EG[h]
E(Ci) (R7) = T%*—Tr ZEQ [hi] + SDl + Sp2 — Sps
Q(p3y _ 2,25 g2, 1 _
E; (RT) = T ZE +3TT 4SD1+SD2 Sps3
3
+ <—ST1 + S2 + *ST?; - 2ST4>

1
ES (RY) = — 2733 ZEQ ] + 67%r? <4SD1 + Sp2 — SD?,)
+Tr (*§ST1 + 4ST2 + 3573 — 6ST4)

1 3
+ <165Q1 + Sg2 — 553 + §SQ4 - 25@5) :

We use Sps and S as examples to illustrate how those terms are related with
summations of expectations of future volatility and shocks. Readers are encouraged to

see Duan et al. (1999) for detailed information of other Sp;, St; and Sg;.

T T T T—1
Spy =E§ | DD hiv/hyzi| =D > EG [V hizihirs).
i=1 j=1

i=1 j=1

So in order to compute Sps we need to calculate (B.6) (defined below).

T T T
Stio= EG D3N hihyhy,
i=1 j=1 k=1
T T—iT—i—j T T—1
= 63 > N Eflhihirjhiri ] +3Y > B hiy)
i=1 j=1 k=1 i=1 j=1

T—1

T
+3) > B lhihy] + Z Eg 1]

=1 j=1

Similarly, to compute Srs we need the terms, (B.3), (B.4), (B.5) and (B.1) for m = 3,
that are defined below.
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Terms Needed for Sp;, S7; and Sg;

In this section we derive the key terms that are needed to evaluate Sp;, St; and Sg;.

From the risk neutral dynamics, we simplify the notation as
log hy+1 = @ + Blog hy + vy,
where © = w + XxG, & = y0, v = 7(2f — \) + 2((zf — A\)? = 1) + Gu}.

Expectations without z

Using the simplified notation, we have:

i—1 i—1
EdQ(h;”) = IEOQ lexp (mﬁi*1 log ht+1) exp (Z md),@k> exp (Z mﬁilkvuk)]
k=1 k=1
=2
hTﬁlil H emﬁk"}EtQ [emﬂk““} .
k=0

Let Fy(m) = emﬁmlﬁig2 [emﬁk”lﬂv}, suppress star and ¢ on z and u. We have

Fp(m) = emﬁka’EQ [exp (mﬁkm)\z —mpBFr X —mpFr + mpa* (7’222 — (21N — 1) z)) exp (mﬁk(fuﬂ
= M8 exp [mﬁkm/\ —mBFr A —mpBFr + ™ 25 o } ]EtQ exp (mﬁk (ngQ — (21 A — 1) z))
_ em,@ &zexp {mﬁk (7_2()\ _ 1) — A+ mﬁk _ (71—45;2)\)2>1|

xEtQ [mﬁkm (z + L;:M)) } )

The last term in the third equation is essentially a moment-generating function of the

non-central chi square distribution. Therefore we have:

k 2
Q k (n—2m0\2| _ 1 mfB®(m1 — 212 \)
ES [mﬁ To <Z + 3, ) } = e, P 10 = 2mBFr)m |

Next, we substitute the expression into Fj(m), and find

_ 1 k(- oy mﬁk 2 mpR(ni—2m))?
Fim) = it exp [m" (5 a0 = 1) = ma 4 257 4 RO )]

Therefore we have:

1—2
m 7—1
ES(h") = b [ Fr(m) (B.1)
k=1
. Similar techniques yield:
J ] J J
ES (hihit;) = EG[n ] H =B [ B [hj1)hy (B.2)

j j+k k _RJ k\_ pk
ES (hihisshiviin) =BG |n 7| B (WD | B (] iy 07 (B.3)

j+1

ES (h2hits) = E b2 BS [y b, (B.4)
J _937

EQ (hih2, ;) = ES [h” “] EQ [n2,,] b ¥ (B.5)
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Expectations with z

When z is involved, the following auxiliary results are needed. Let Y; = @ + v;, then

we have:
Eg(zi exp(kY;)) = E? [z exp (k@ + k71(2 — A) + k7o[(zi — A)? — 1] + kéw;) |
= ]EOQ [z, exp (kngiQ + k(m — 27'2)\)zi)] exp (kJJ — kA + Ekr(\2 —1) + ]“2—52)
- 2&2 —b 2
= exp (kzw —kTA+ k(X —1)+ & . 5 \/#2—@/2\/271/2[1 exp(— & 2//360 )dz
= exp (kd} — kA + k(A —1) + 4a S 2) Wa
Eg(zf exp(kY;)) ]EOQ (27 exp (k@ + k71 (2 — A) + k7o [(2: — N)? — 1] + kéu;)]
= [ fexp (kngi +k(m — 27'2)\)21‘)] exp (kdz —km A+ Ekn(A\2 = 1) + k22&2>
~ 2 252 2—b/2a)?
= exp (k‘w — kT A+ 167'2(/\2 -1+ %a + k 5 ) \/%—G/ZZ \/2711'/20, exp(—( 2/21 ) )dz
= exp (ko — brd+ k(A = 1) + B + B2 Baze
ES (2} exp(kY;)) = E§ [0 exp (kd + k(2 — ) + k7o[(2i — A)? — 1] + kéu;) ]
]EQ (23 exp (kmez] + k(T — 2m2))z;) ] exp <k(1} — kA + Er(A\2 1) + k2252>
~ 2~ 2 q z— a 2
= exp (kw — kT A+ hkr(A —1) + E e \/% / 23 \/271r/2a exp(—( Q%i ) )dz
= oxp (ko — knA+hn( - 1)+ £ 4 k;) el
where a = % — k1o,b = k(11 — 212\). In the following calculations, we still use the similar

technique in deriving (B.1) and link expectations with these terms.

1
(5 +3) o _pi1
B (Vesihoss) = B |12 B [ exp(3-170)] B9 Iyl 1 (B
_ B (85 +3)+1 (B*+3)
E (hiv/hivszivihivisr) = EG [zi05exp (857 Yir;)] EG {h } Ef {hj—&-l 2 }
k k—1
YEQ () h O D (B.7)

E(?(\/EzihiJrjhiJerrk) _ Eo [2: exp (53 L1+ 8, )}EQ {hﬁa(ﬁ +1)+2} EQ [h( +1)}

XEQ (hyyr) by 7O (B.8)
B (12 g) = B [sexp (97Y) B [0 2] B [y h” (B.9)
ES (Vhizih?, ;) = E§ [z exp (268771Y;) | EF {h% "2 }EQ [h2] hy %" (B.10)

]EQ \/>Zz\/ i+j%i+j z+j+k) = E(C)Q [zieXp (5j_1 (%‘Fﬁk) )]]Eo [Zerj exXp (5 Yz‘ﬂ')]

(g9 7 (7 2) s h§6k+2)1
CEQ[ Y D (B.11)
E (hizthivs) =BG [ exp (871Y:) | EG [+ B Ihy]n ™ (B.12)
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With a = ™ + 1 and b = af* + 1

EQ (V hizi VitjZzit; z+]+khz+j+k+m>
k
= EQ ( i%i\/ z+JZz+th+j+th_]+k €xp (Z Yirjthtm— w))

= E§ hizin/hitjzitihis jpr lhfm exp (Z Bw_1n+j+k+mw>] ) h"
w=1
(v hiziy/ hi+jzi+jh?+j+k) Eg (hm11)hy”

(Vhizhl;) ES (214 exp (a8 Vi) BF (B)ES (hunsr 7
_EQ (n72 )EQ(hb)EQ(ha)EQ(hmH)E? (2 exp (b3 71Y3))
x EQ (21 exp (aBF iy 1)) by 000D (B.13)

With m = g*F +1

j . (B mpi—t
E§ (hiz?hisshisjr) =BG [h?ﬁjﬂ} E§ [ B [hit1] x B [ exp (8771Y;)] Ay (FFmBt)
(B.14)

w=1

k—1 _pgk—1
hi hf—i-;rl 12+y exp (6 1Yz+g ﬁ exp (Z B Yigjth— w)) hy A

= Egz hi hy, H) ]EQ ( Zitj €XP (5 71Yi+j)) Eg (hk)hfﬁk 1

k
k
Eg(hihi+jzz‘2+jhi+j+k) = Eg) (hlhiJeri%rjthrj €Xp (Z Bw_1Yi+j+kw>>

i+7
_ k—1 j
= B [ B [ ER () ER [, exp (81 ip) 1y O )
(B.15)
iyl 4
Eg(mzihi+jzg+jhi+j+k) = EdQ [hi p +2] IEOQ [h;n} EOQ [hk]]EdQ [ exp (mﬁj_lyi)] %
ES [, exp (84 Vo) Ay O H (B.16)

Withw:ﬁm—&—%ands:wﬁk—i—%:

E§ (Vhizi/ it zivi v/ Rivi sk Zisjonhisjskem)
~Eg (hsﬁ +2) ES (21 exp (s6771Y1)) B (2i4s exp (wB*Yie))) EG (sisjak 0xp (™ Yirjn))

(B Bk laggi—t
x ES (h3)ES (E)ES (B )by 70 o870 (B.17)

With m = g% 4 L:

EG (hizf v/ hivszitshivien) = EG {hfﬁjﬂ} EG [h]) EG (] EF (27 exp (17 ~'Y;)]
E [zi4y exp (85 Vi) by 0 (B.18)
EG (0 23hirs) = B [ exp (391Y) BY [ 3] B (1] nr " (B.19)

Table B.1 provides a summary of here these 19 formulas are used. Duan et al. (2006)

omitted several “small” terms especially in Sg; and we follow their approach in this paper.
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Table B.1: Formulas used in evaluation Sp;, S7; and Sg;

Formula number B.x

Sp1 1 2

Spa 1

Spz 6

St 1 3 4 5

St9 6

Srs 7 8 9 10

Sty 1 11 12

Sg2 1 11 12

Sogs 4 13 14 15

Sgs 7 8 9 10 16 17 18 19

Finally, the expectation of fractional powered h is evaluated through Taylor

expansion:
EQ Y ~ (1 _ 23,2, 13,3 1. 4\gQp 0
o[t}~(+12a Ta' + pa’ — ga') Eg (]
+(=3a+ 2a? — 2a® + 1a*) EF [h]" *EF [n7]
+(%a—Ta® + Ta® — La*) ES [h)* P ES [h]]
+(—fa+ g3a® — ja® + gza*) Eg [h]* ' ES [f].
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