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1 Introduction

It is well known that realized measures of volatility, which are computed from high

frequency data, provide accurate measurements of the latent volatility process. The

prime example is the realized variance, see e.g. Andersen et al. (2003). Volatility is

fundamental for option pricing, so it is natural to explore ways to incorporate realized

measures into option pricing. Several papers have recently shown that discrete time

models that incorporate the realized variance, can significantly improve the performance

of option pricing. For example, Christoffersen et al. (2014) develop an affine discrete-

time model to provide a closed-form option valuation formula through the conditional

moment-generating function. The volatility dynamic is modeled as a weighted average

between components from daily returns and realized variances, where both components

have a Heston-Nandi1 structure. They show that including the realized variance results

in a considerable pricing improvement. Their paper also suggests the need for further

research on pricing, using non-affine models and modeling leverage effect separately for

both return and realized measures. A related framework is that in Corsi et al. (2013), who

employ a Heterogeneous Autoregressive Gamma (HARG) model. This model assumes

that the realized variance follows a simple process (with linear long-memory features) and

option pricing can be obtained using Monte Carlo simulation. This model was further

developed in Majewskia et al. (2015), who enhance the HARG model with a Heston-

Nandi type leverage. Their framework includes a class of linear GARCH models with

parabolic leverage, including those in Heston and Nandi (2000) and Christoffersen et al.

(2008), and the framework conveniently leads to a closed-form option pricing formula.

In this paper, we derive the option pricing formula for the Realized GARCH

framework, which may result in better pricing performance, becauce the Realized

GARCH framework has proven to be superior to conventional GARCH models for the

modeling of returns and for forecasting volatility. The Realized GARCH model was

proposed by Hansen et al. (2012), and further refined by Hansen and Huang (2016),

which is the variant we adopt for the option pricing in this paper. The model may be

labelled as a non-affine log-linear Realized Exponential GARCH model.

The Realized GARCH framework is attractive for option pricing for several reasons.

First, the realized variance is incorporated in the model and linked to the latent

conditional volatility through a measurement equation. This not only improves the

accuracy of the volatility forecast, but also allows for an additional risk premium that

relates to volatility-specific shocks. Second, the model benefits from having both return

and volatility shocks, similar to stochastic volatility models. Still, the Realized GARCH

model is an observation-driven model that permit straight forward estimation by the

maximum likelihood. Third, the measurement equation in our model does not require

the realized measure to be an unbiased estimator of the daily volatility. Unbiased

estimators are difficult to obtain because high-frequency data is only available for a

fraction of the day. Market microstructure noise that is not properly accounted for, see
1In the Heston-Nandi GARCH model (Heston and Nandi (2000)), volatility is filtered through return

data and a closed-form pricing formula is provided.
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Hansen and Lunde (2006), can also induce bias in realized measures. In contrast, the

HARG model requires an unbiased estimator, and assumes that a rescaling of the

realized variance (based on the trading hour’s information) achieves this objective.

Fourth, the model operates with distinct leverage functions for returns and realized

variances. The importance of this flexibility is documented in Hansen et al. (2016) for

the pricing of the CBOE volatility index (VIX). Fifth, the log-linear specification avoids

many of the constraints that often must be imposed to guarantee positivity of the

volatility process. Taking the logarithm also serves to reduce the impact of outliers in

the realized measure of volatility. This transformation makes the model more stable,

especially during periods with high volatility of volatility.

A quasi closed-form option pricing formula is very hard to obtain for a non-affine

model, using the standard method based on the moment-generating function and the

inverse Fourier transformation. When a closed-form expression is unavailable one can

resort to Monte Carlo methods, see e.g. Corsi et al. (2013) and Kanniainen et al.

(2014). While this method is straight forward to apply, it can be very time consuming

to achieve a desirable accuracy. This makes analytical approximation methods an

attractive alternative. For GARCH-type models, including non-affine models, Duan

et al. (1999) and Duan et al. (2006), developed an analytical approximation method

that is based on a Gram-Charlier series expansion, which is closely related to the

Edgeworth expansion used in this paper. The basic idea is to expand the density of the

cumulative return with its first four moments and a standard normal density. Although

the closed-form pricing formula is not available, moments of the cumulative return can

be calculated with analytical formulas. Compared to the Monte Carlo simulation, an

analytical approximation is much faster in practice and free of sampling errors, but can

suffer from approximation error. In our Realized GARCH framework, the

approximation error is indeed problematic for the Gram-Charlier based method of

Duan et al. (1999). We therefore derive an analytical approximation method based on

an Edgeworth expansion, which performs much better in simulations and empirically.

Gram-Charlier and Edgeworth expansions are similar, which may explain that Gram-

Charlier is sometimes incorrectly labeled as Edgeworth. This mislabeling is used in

much of the related literature, including Jarrow and Rudd (1982), Duan et al. (1999)

and Duan et al. (2006). Despite their similarity, the two expansions employ different

truncations which results in different properties.2 Cramér compared the two expansion in

a series of papers, and deemed the Edgeworth expansion to be superior, see e.g. Cramér

(1946). Formally, when a Gaussian distribution is employed as reference distribution,

Blinnikov and Moessner (1998) show that the Edgeworth expansion achieves a better

approximation for near-Gaussian distribution, and Eggers et al. (2011) highlights how

poorly the Gram-Charlier expansion is at approximating a symmetric Normal Inverse

Gaussian distribution, while the Edgeworth expansion performs well.
2The density of a sum of n random variable may be approximated by an truncated expansion involving

a reference density. The order of the Gram-Charlier expansion is defined from the number of included
derivatives of the reference density. F. Y. Edgeworth observed that successive terms are not of decreasing
order of magnitude in terms of powers of n. Sorting and collecting terms with the same power of n, n1/2,
n2/2, . . ., and including all terms up to order nk/2 defines the Edgeworth expansion (of order k).
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There are three common approaches to estimating an option-pricing volatility

model.3 The first approach is to estimate the volatility model for returns, e.g. by

maximizing the log-likelihood, see e.g. Christoffersen et al. (2003), then estimate equity

risk parameters by no-arbitrage conditions. For a GARCH-type model, which has a

single shock, the equity risk premium parameter may be identified by matching

expected return to the risk-free rate (under the risk-neutral measure). This approach to

estimation is not directly applicable to the Realized GARCH framework, because it has

two separate shocks and it would require an additional moment condition to identify

both the equity risk premium parameter and the volatility risk premium parameter. A

second approach to estimation in this context, is to directly target option pricing, and

estimate all parameters by minimizing the option pricing error4, see e.g. Heston and

Nandi (2000). This method obviously delivers the best in-sample fit in terms of option

pricing. However, it tends to result in absurd parameter estimates and large

out-of-sample pricing error. A third estimation approach is to maximizing a joint

"likelihood", where parameters are estimated to explain underlying time series, (e.g.

returns and realized measures) as well as observed option prices.5 (see Christoffersen

et al. (2014) etc.). This method, that entails a trade-of between fitting the underlying

time series and option prices, has received increasing attention in the option pricing

literature.

In this paper, we conduct an extensive empirical analysis with a large panels of

option prices. The data set spans fourteen years of which twelve are used for in-sample

estimation and two years are used for out-of-sample evaluation. We consider a range

of distinct models in our comparisons, including the Heston-Nandi GARCH by Heston

and Nandi (2000) (which is commonly used benchmark model); two linear asymmetric

models: NGARCH (Engle and Ng (1993)) and GJR-GARCH (Glosten et al. (1993));

a log-linear asymmetric model: EGARCH (Nelson (1991)) and the recently proposed

GARCH model with realized variance: GARV (Christoffersen et al. (2014)). The main

conclusion is that the use of realized measures greatly reduces option pricing errors,

and our Edgeworth-based pricing formula in conjunction with the Realized GARCH

model has be best out-of-sample performance. For instance, the Realized GARCH model

reduces the out-of-sample pricing errors by 18.9% on average, relative to those of the

GARV model, and by 22.3% or more relative to all other models in our comparison.

For option based parameters, the two figures are nearly 30%6. Those results highlight

the empirical gains on a non-affine model with separate leverage effect and reinforce the

existing literature on the importance of including realized variance into option pricing.

The remainder of this paper is organized as follows. In Section 2, we provide a brief

introduction of the Realized GARCH model and the corresponding risk neutralization
3See Christoffersen et al. (2013) for a detailed explanation.
4Usually in terms of the difference in implied volatility or other equivalent measures such as the Vega

weighted pricing error.
5Or fitting error for other Q-measure series such as the volatility index (see Kanniainen et al. (2014)

etc.).
6The provided out-of-sample results are based on the extended 2 years of option data. We also provide

an alternative out-of-sample comparison with Thursday data (parameters are estimated with Wednesday
data, see main text for details), and the four figures are 4.3%, 14.2%, 10.9%, and 18.1%.
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procedure. In Section 3, we discuss how to price European Call options with an analytical

approximation. Special attention is paid to the expansion where the proper terms for the

Edgeworth expansion are derived. In Section 4, we present all the competing models used

in our comparisons. Empirical results are presented in Section 5, where we compare the

models, both in-sample and out-of- sample, and with a variety of estimation methods.

Pricing performance is evaluated at the aggregated level and for different subcategories in

terms of the moneyness, maturity and volatility index level. The final section concludes

and provides two directions for further research.

2 The Model

2.1 Realized GARCH model

The Realized GARCH model we adopt in this paper is given by:

rt+1 = r + λ
√
ht+1 − 1

2ht+1 +
√
ht+1zt+1, (1)

log ht+1 = ω + β log ht + τ1zt + τ2(z
2
t − 1) + γσuut, (2)

log xt = ξ + φ log ht + d1zt + d2(z
2
t − 1) + σuut, (3)

where zt and ut are independent standard normal random variables. This is the variant

proposed by Hansen and Huang (2016) that has an explicit leverage term in its GARCH

equation (2). See Hansen et al. (2012) for additional variants of the Realized GARCH

model. Hansen et al. (2016) model the CBOE VIX with this model and find that an

additional leverage term in addition to the realized variance can deliver a better fit and

forecast of the physical dynamic of S&P500, the risk neutral dynamic of VIX, and the

volatility risk premium (measured by the different between the two).

This model ahs two characteristics that are attractive in the present context for option

pricing. First, the Realized GARCH model shares a key feature of stochastic volatility

model, in having an innovation term, ut, that relate directly to volatility, but the model

is much easier to be estimated, because it is an observation driven model. Second, the

Realized GARCH model, as formulated above, has fewer parameter restrictions than

related discrete time models that also utilize realized variance in option pricing. This

also simplifies the estimation.

2.2 Risk neutralization

To derive the option pricing formula, we need to find the model dynamics under the

risk neutral measure. The following exponentially affine stochastic discount factor (SDF)

is used for risk neutralization,

Zt+1 =
exp(v1,tzt+1 + v2,tut+1)

E(exp(v1,tzt+1 + v2,tut+1))
= exp

(
v1,tzt+1 + v2,tut+1 −

v21,t
2
−
v22,t
2

)
,

where zt and ut are independent standard normal random variables.

This specification of risk-neutralization has also been adopted in option pricing models

using realized variance, such as those of Corsi et al. (2013), Christoffersen et al. (2014)
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and Majewski et al. (2015). Such specification of risk-neutralization degenerated to the

locally risk-neutral valuation relationship (LRNVR) of Duan (1995) when ut = 0.

Let Rt+1 = yt+1 − yt. The non-arbitrage condition, EQt (exp(Rt+1)) = exp(r), yields

EQt (exp(Rt+1)) = Et(Zt+1 exp(Rt+1))

= exp(r + λ
√
ht+1 + v1,t

√
ht+1) = exp(r),

with the implication that

v1,t = −λ.

Therefore, the risk neutral moment-generating function is

EQt (exp(s1zt+1 + s2ut+1)) = Et(Zt+1 exp(s1zt+1 + s2ut+1))

= exp

(
−s1λ+ s2v2,t +

s21
2

+
s22
2

)
.

This implies, that we under the risk neutral Q-measure have

z∗t+1 = zt+1 + λ,

u∗t+1 = ut+1 − v2,t.

Here, we set v2,t = χ and assume it is time invariant to ensure that the model is also

affine under the risk neutral measure.

Hence, the dynamics under the Q-measure is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1, (4)

log ht+1 = ω + β log ht + τ1(z
∗
t − λ) + τ2((z

∗
t − λ)2 − 1) + γσu(u∗t + χ), (5)

log xt = ξ + φ log ht + d1(z
∗
t − λ) + d2(((z

∗
t − λ)2 − 1) + σu(u∗t + χ), (6)

where z∗t and u∗t are independent standard normal random variables.

When we estimate the model under the Q-measure, the effective model is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1

log ht+1 = ω∗ + β log ht + τ1(z
∗
t − λ) + τ2((z

∗
t − λ)2 − 1) + γσuu

∗
t ,

log xt = ξ∗ + φ log ht + d1(z
∗
t − λ) + d2((z

∗
t − λ)2 − 1) + σuu

∗
t .

Note that if we estimate the model with option data based nonlinear least squares, the

variance σu cannot be identified and the effective number of parameters is reduced by 2.

When our model is estimated with the joint estimation, the likelihood of the underlying

time-series helps to identify σu and χ separately.
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3 Analytical Approximation of a European call

3.1 Edgeworth expansions

The Realized GARCH model does not have an analytical formula for the moment

generating function. That means the conventional explicit pricing formula via Fourier

inverse transformation is not applicable. Instead, we use an analytical approximation

method to calculate the option price. The more straightforward Monte Carlo simulation

method is not used because we want to calibrate key parameters with the large scale

option data set. The Monte Carlo method does not provide a good foundation for this

task as it is less time efficient and subject to substantial sampling errors.

To get the formula, we expand the density of the cumulative return using the following

second-order Edgeworth expansion.7

g(z) =

[
1 +

κ3
6
H3(z) +

(κ4 − 3)

24
H4(z) +

κ23
72
H6(z)

]
φ(z),

where φ(z) is the density function of the standard normal distribution, and Hn(z) is the

n-th order (probabilist’s) Hermite polynomial, given by

H3(z) = z3 − 3z,

H4(z) = z4 − 6z2 + 3,

H6(z) = z6 − 15z4 + 45z2 − 15.

The Gram-Charlier expansion, used in Duan et al. (1999), employs a different truncation,

which causes it to exclude the term, κ23
72H6(z), from the expression above. We find the

Gram-Charlier expansion to be inadequate in the present context. To illustrate this point,

we use parameters estimated for the Realized GARCH model from Table 3 to calculate

the analytical approximation of moments for 90 days horizon. Those moments are then

used to compute the analytical approximations to cumulative returns. Additionally,

we conduct a Monte Carlo simulation to calculate the corresponding empirical density.

Those two densities are plotted in Figure 1. We provide the corresponding results for

the conventional EGARCH in Figure 2.

[Insert Figure 1 and Figure 2 here]

From Figure 1 it is evident that the approximation based on the Gram-Charlier

expansion is inadequate for the Realized GARCH model. A significant improvement is

obtained by using the Edgeworth expansion instead. From Figure 2 we observe the that

Gram-Charlier performs reasonably well in this design where the underlying model is the

EGARCH model, although the Edgeworth expansion continue to be a bit more accurate.

A key difference between these the Realized GARCH model and the EGARCH model,
7The Edgeworth expansion is designed to approximate the distribution of the standardized sum

of i.i.d. random variables Sn =
∑n
i=1(Xi − µx)/

√
nσ2

x. A Taylor expansion of the characteristic
function of Sn yields the following first three terms of the expansion are: φ(z), κ3

6
H3(z)φ(z),(

κ4−3
24

H4(z) +
κ23
72
H6(z)

)
φ(z), where κi is the i-th moment and φ(z) is the pdf of the standardized

normal distribution.
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is that the former has an additional innovation shock – the volatility shock u. This

shock has important implication for the distribution. For instance it generates fatter

tails which the Edgeworth expansion does a better job at capturing. For this reason we

will deduce the option price approximation from an Edgeworth expansion, rather than

the Gram-Charlier which is commonly used in this literature.

3.2 Pricing formula

Under the risk neutral measure, the European call option price is given by:

e−rTEQ0 (max(ST −K, 0)).

Let RT = log(ST /S0), as shown in the appendix, the expectation can be written as an

integral of the standardized cumulated return zT = (RT − µ)/σ:

e−rT
ˆ k

−∞
[S0 exp (µ− σz)−K] g̃(z)dz,

where k = (log(S0/K) + µ)/σ and g̃(z) = g(−z). By inserting the expansion formula

and integrate we obtain the pricing formula given in the following Proposition.

Proposition 1. The price of a European call option associated with the Realized GARCH

model can be expressed as

Capprox = C + κ3A3 + (κ4 − 3)A4 + κ23A6, (7)

where:

C = S0e
δσΦ (d)−Ke−rTΦ (d− σ) ,

A3 =
1

6
S0e

δσσ
[
(2σ − d)φ (d) + σ2Φ (d)

]
,

A4 =
1

24
S0e

δσσ
[(
d2 − 1− 3σ (d− σ)

)
φ (d) + σ3Φ (d)

]
,

A6 =
1

72
S0e

δσσ
[
σ5Φ(d) +

(
3− 6d2 + d4 + 5σ

(
d− (d− σ)(σd− 2)− (d− σ)3

))
φ(d)

]
,

d =
log(S0/K) + µ

σ
+ σ

where κi = EQ0 (ziT ).

Proof. See appendix.

To calculate option price from (7), we need to calculate the first four moments of

the standardized cumulative return. Since equation (1) provides the non-standardized

return, it is more convenient to express κi and in terms of EQ0 (RiT ):

κ3 =
1

σ3

[
EQ0
(
R3
T

)
− µ3

]
− 3

µ

σ
κ4 =

1

σ4

[
EQ0
(
R4
T

)
− µ4

]
− 2

µ

σ

(
2κ3 + 3

µ

σ

)
.

The evaluation of EQ0 (RiT ) is given in the appendix.
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4 Competing Models

Five competing models are considered: EGARCH, NGARCH, GJR-GARCH, HN-

GARCH and GARV. Except for the EGARCH model, all models are linear. Apart from

the HN-GARCH and the GARV model, no models have explicit pricing formula. Only

the GARV model utilizes realized variance as additional underlying information. Table

1 provides an overview of competing models. Due to the inclusion of realized variance,

the number of parameters is greatly increased compared with traditional GARCH-type

models.

[Insert Table 1 here]

More details of each competing model are listed below.

EGARCH

The physical dynamic of the EGARCH model is

rt+1 = r + λ
√
ht+1 − 1

2ht+1 +
√
ht+1zt+1,

log ht+1 = β0 + β1 log ht + τ1zt + τ2

(
|zt| −

√
2
π

)
.

The risk neutral counterpart is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1

log ht+1 = β0 + β1 log ht + τ1 (zt − λ) + τ2

(
|zt − λ| −

√
2
π

)
The persistence parameter under both measures is identical.i.e. πP = πQ = β1.

NGARCH

The physical dynamic of the NGARCH model is

rt+1 = r + λ
√
ht+1 − 1

2ht+1 +
√
ht+1zt+1,

ht+1 = β0 + β1ht + τ1ht (zt − τ2)2 .

The risk neutral counterpart is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1,

ht+1 = β0 + β1ht + τ1ht (z∗t − (τ2 + λ))2 .

The persistence parameter is πP = β1 + τ1
(
1 + τ22

)
for the physical measure and πQ =

β1 + τ1

(
1 + (τ2 + λ)2

)
for the risk neutral measure.
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GJR-GARCH

The physical dynamic of the GJR-GARCH model is

rt+1 = r + λ
√
ht+1 − 1

2ht+1 +
√
ht+1zt+1,

ht+1 = β0 + ht
[
β1 + τ1z

2
t + τ2 max(0,−zt)2

]
.

The risk neutral counterpart is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1,

ht+1 = β0 + ht
[
β1 + τ1(zt − λ)2 + τ2 max(0,−(zt − λ))2

]
.

The persistence parameter πP = β1 + τ1 + τ2
2 for the physical measure and πQ = β1 +

(τ1 + τ2Φ(λ))
(
1 + λ2

)
+ τ2λφ(λ) for the risk neutral measure.

HN-GARCH

The physical dynamic of the HN-GARCH model is

rt+1 = r +
(
λ− 1

2

)
ht+1 +

√
ht+1zt+1,

ht+1 = β0 + β1ht + τ1

(
zt − τ2

√
ht

)2
.

The risk neutral counterpart is

rt+1 = r − 1
2ht+1 +

√
ht+1z

∗
t+1,

ht+1 = β0 + β1ht + τ1

(
z∗t − (τ2 + λ)2

√
ht

)
.

The persistence parameter is πP = β1 + τ1τ
2
2 for the physical measure and πQ = β1 +

τ1 (λ+ τ2)
2 for the risk neutral measure.

GARV

The physical dynamic of the GARV model is

rt+1 = r +
(
λ− 1

2

)
h̄t+1 +

√
h̄t+1zt+1,

h̄t+1 = κhRt+1 + (1− κ)hRVt+1,

hRt+1 = ω + βhRt + τ1

(
zt − τ2

√
h̄t

)2
,

RVt = hRVt + α2

[
(εt − d2

√
h̄t)

2 − (1 + d22h̄t)
]
,

hRVt+1 = ξ + φhRVt + d1

(
εt − d2

√
h̄t

)2
,

where (zt, ut) follows a standard bivariate normal distribution with ρzε = ρ. We also

introduce γ = d1/α2.
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The risk neutral dynamics are

rt+1 = r − 1
2 h̄t+1 +

√
h̄t+1zt+1,

h̄t+1 = κhRt+1 + (1− κ)hRVt+1,

hRt+1 = ω1 + β1h
R
t + τ1

(
zt − τ∗22

√
h̄t

)2
,

RVt = hRVt + α2

[
(εt − d∗22

√
h̄t)

2 − (1 + d∗22 h̄t)
]
,

hRVt+1 = ξ + φhRVt + d1

(
εt − d∗22

√
h̄t

)2
.

The persistence parameter for the GARV model is a vector. To make things simpler,

we define the persistence parameter as the maximum of the two persistence parameters

associated with hR and hRV . i.e. πP = β1 + τ1τ
2
2κ for the physical measure and πQ =

β1 + τ1τ
∗2
2 κ for the risk neutral measure.

5 Empirical Results

5.1 Data

The empirical comparisons are based on daily returns of the S&P500 index, the

realized variance as well as the daily option data8. As the realized variance starts at

200001 and the option data ends at 201412, we use the option data from 2000-2012 for

in-sample comparison and reserve 2013-2014 for out-of-sample evaluation. The option

data are trimmed using the following common method:

1. Keep option data on Wednesday (for in-sample) and Thursday (for out-of-sample)

only.

2. Drop all options with zero (daily) trading volume and missing implied volatility.

3. Calculate option price with the average of best bid and best ask and drop all options

with price less than 5 dollar.

4. Drop all options whose time to maturity is less than 15 days or longer than 180

days.

5. Drop in-the-money options and very deep out-of-the-money options (i.e. S/K > 1.3

or S/K < 0.7).9

6. Keep the six most liquid (in terms of daily trading volume) for every maturity in

each day.

7. Replace put options with call options using the put-call parity.

Table 2 provides an extensive summary for the number of contracts and the average

implied volatility within each subcategory in our option data set. Panel A summaries

data which will be used to estimate parameters. Panel B and C summarize data that will
8These data are collected from Yahoo finance, the Realized Library at the Oxford-Man institute, and

OptionMetrics from WRDS.
9In Corsi et al. (2013), deep out-of-momey is defined as S/K > 1.06 or S/K < 0.94.
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be used to implement out-of-sample comparison. Following Christoffersen et al. (2014),

we use Black-Scholes delta to measure the moneyness of options. As we only keep out-

of-the-money options, those with deltas higher than 0.7 are deep out-of-the-money put

options. It can be seen that those options are relatively expensive compared with out-of-

the-money calls which display the stylized volatility smirk across moneyness. The smirk

pattern is more profound in recent years.

[Insert Table 2 here]

5.2 Estimation method

We estimate a model with joint likelihood of the observed time series and the pricing

errors, where the latter are weighted by the vega10. Unlike traditional calibration method

focusing only on pricing errors, this approach also takes the model’s ability to replicate

underlying dynamics into account. The parameter to be estimated for option pricing

with the Realized GARCH model are given by:

Θ = {λ, ω, β, τ1, τ2, γ, ξ, φ, d1, d2, σu, log h1, χ, σe}

where σe is the standard deviation of vega-weighted option pricing errors. With the data

{rett, rvt|t = 1, 2, ..., T} and {optioni|i = 1, 2, ..., N} the parameters can be estimated by

maximizing the joint likelihood function:

`full(ret, rk, option; Θ) = `r(ret; Θ) + `x(rv; Θ, ret) + `o(option; Θ, ret, rv)

where:

`r = −T
2

log(2π)− 1
2

T∑
t=1

log(ht)−
T∑
t=1

(rett − r − λ
√
ht + 1

2ht)
2

2ht
,

`x = −T
2

log(2π)− T

2

T∑
t=1

log(σ2u)−
T∑
t=1

(log rvt − ξ − φ log ht − d1zt − d2(z2t − 1))2

2σ2u
,

`o = −N
2

log(2π)− N

2

N∑
i=1

log(σ2e)−
N∑
i=1

((
PMod
i − PMkt

i

)
/νi
)2

2σ2e
,

where PMod
i and PMkt

i are the model-implied option price and the market price,

respectively. The weighting-parameter, νi, is the Black-Scholes Vega that measures the

option’s sensitivity to implied volatility changes.
(
PMod
i − PMkt

i

)
/νi is, therefore, an

approximation of the difference in implied volatility. From the first order conditions of

the likelihood, it follows that σ2e is simply estimated by 1
N

∑N
i=1

((
PMod
i − PMkt

i

)
/νi
)2,

and we note that its square root, σe is identical to a term labelled νRMSE in

Kanniainen et al. (2014).

An alternative way to formulate joint estimation is focusing on the VIX index

instead of option price. We do not use this method because it ignores key information

for maturities other than 30 days (in our case, the maturity varies from 15 to 180).
10The analytical approximation (7) ensures that the Vega-adjusted option pricing error is free from

sampling error and therefore a well defined objective function.
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Information on variance risk premium over different time horizons might not be fully

conveyed by the volatility index. Using a term structure for VIX might be a solution to

this problem. However, constructing the historical VIX term structure itself calls for

considerable effort.

We also calibrate models using the conventional nonlinear least square (NLS) method,

where only the `o is considered. Although both return and realized variance are used in

the calculation, their only job is filtering the latent volatility. The goodness of fit on both

series is irrelevant. Approximation formulas for EGARCH, NGARCH and GJR-GARCH

models are provided in Duan et al. (1999) and Duan et al. (2006). We follow their results

when options are priced under corresponding models11.

5.3 Parameter estimations

Table 3 provides parameters estimated from both methods for all models considered.

Robust standard errors are in parenthesis. Likelihood function values and persistence

parameters of volatility dynamics are also provided.12

[Insert Table 3 here]

The left columns are associated with joint estimation where fit of option price and

underlying dynamics are both taken into account. For the Realized GARCH model,

we have: 1) β close to one indicating a strong persistence of volatility dynamics; 2) a

significant leverage effect indicated by τ1, τ2, d1 and d2; 3) φ close to 1, reinforcing the

idea that (3) is a measurement equation; 4) a significant contribution of realized volatility

through γ, indicating the importance of realized measures; 5) significant equity premium

(λ) and volatility premium (χ); 6) the smallest σe that is a measure of (ν-weighted)

option pricing error.

We estimate the GARV model in two steps because the stationary constraint

presented in Christoffersen et al. (2014) cannot guarantee a positive ω1 and ξ. First, we

estimate the model with the constraints used for NLS estimation to make sure that the

volatility is positive. Second, we re-estimate τ∗1 and τ∗2 with stationary constraints.13

As parameters τ1, τ2, τ∗1 and τ∗2 driven to their limits (almost to the boundary defined

by the constraints), the volatility risk premium is very small and the σe is a little larger

than the Realized GARCH model. Models without realized measures all have

significantly larger option pricing error, as defined by σe. We also find that πQ is

generally larger than πP , which confirms findings in the option pricing literature that

volatility is more persistent under the risk neutral measure.
11Kanniainen et al. (2014) use NGARCH and GJR-GARCH with NLS estimation where price is

calculated using a Monte Carlo simulation. This method is slow and can generate different prices for
the same option even with the same set of parameters (due to sampling error) without holding the seed
of the random variable generator constant.Therefore, we use approximation method instead.

12For joint estimation, the persistence parameters under the physical and risk neutral measures are
provided. For option-based estimation, only the risk neutral persistence parameters are provided.

13We would like to thank Peter Christoffersen for his kindness in sharing with us the NLS estimation
code for the GARV model. We also estimated the model with NLS constraints on τ1, τ2 and stationary
constraints on τ∗1 , τ∗2 together. Although this method can improve σe, it delivers strangely small τ1,τ2
and significantly larger out-of-sample σe (probability due to in-sample over-fitting).
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The right columns are associated with NLS estimation where the objective solely

focuses on fitting option price. This empirical results with this estimation method leads

the the following observations. First, the persistence parameter is larger than that

obtained with joint estimation. Second, the parameters in the Realized GARCH model

are substantially different, such as those related to the leverage effect (significantly

more asymmetry) and γ (now smaller), which measures that impact that the realized

measure has on volatility. We also observe that the estimated φ in the measurement

equation now differs substantially from unity. For the GARV model we now estimate

the correlation between two shocks to be one. Some of this estimates are obviously

unrealistic, but are chosen by the NLS procedure because these values help minimize

the in-sample option pricing errors. Third, the Realized GARCH model outperforms

the other models. Perhaps impressively, the Realized GARCH model with joint

estimation does better than the GARV model with NLS estimation in terms of

IVRMSE.

It is worth noting that the QMLE estimation method used for the GARV model

assumes that the return and realized variance follows a bivariate normal distribution,

which is clearly at odds with reality. The values of the likelihood functions of the Realized

GARCH model and the GARV model are therefore not directly comparable.

5.4 In-sample pricing performance

Table 4 provides detailed in-sample pricing performance for both methods. From

here on, we evaluate the model’s pricing performance through the root mean square of

implied volatility (IVRMSE):

IV RMSE =

√√√√ 1

N

N∑
i=1

[
IVMod

i − IVMkt
i

]2 × 100,

where IVMod
i and IVMkt

i are the Black-Scholes implied volatility of option i calculated

with the model price and the market price respectively. The total IVRMSE shows the

same patten as σe in Table 3. Here, we decompose the total IVRMSE into subcategories

according to three different characteristics. The first is the moneyness, which is linked

to the model’s ability to generate enough leverage effect. The second is the time to

maturity, which is linked to the model’s ability to track long-run dynamics. The last

characteristic is the contemporary volatility index level, which is linked to the model’s

ability to generate enough variance risk premium. The left columns are results from joint

estimation and the right columns are results from the NLS estimation.

[Insert Table 4 here]

Joint estimation

The total IVRMSE shows that the Realized GARCH model has the smallest pricing

error and the GARV model has a slightly higher (2.8%) pricing error. The NGARCH

and GJR-GARCH models have comparable pricing error, followed by the Heston-Nandi
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GARCH model. The EGARCH model has the worst pricing performance. The fact that

all models without realized variance have significantly higher IVRMSE highlights the

importance of realized measure in option pricing. In subcategory comparison, we still

confirm that the Realized GARCH model does a better job in most cases.

It is interesting to compare the Realized GARCH model to the GARV model, which

also utilizes realized variance. The Realized GARCH model performs better on deep

out-of-the-money options. The GARV model has better performance when the option is

less out-of-the-money. This result might be caused by the fact that key parameters of

leverage in the GARV model (τi, τ∗i ) are limited by the positivity constraints. The

Realized GARCH model has better performance at shorter maturity while the GARV

model does better at longer maturity. One possible explanation is that the GARV

model has the structure of a component volatility model, that are known to excel at

modeling long-term volatility. The Realized GARCH model has better pricing ability

when the volatility index is higher and the GARV model works better when the

volatility index is lower. This can be explained by the fact that the log-linear

specification of the Realized GARCH model has an advantage to react to sharp

volatility changes through the exponential of log h. It can be seen that the EGARCH

model performs worse than all other models. This indicates that log-linear specification

needs accurate information on log h, or the measurement error will also be

exponentialized and severely jeopardize the model’s pricing performance.

NLS estimation

The NLS estimation yields similar results. The Realized GARCH model still

outperforms other models, with an 9.5% average improvement over the GARV model

and 21% (or more) improvement over methods that do not utilize realized measures.

Unlike in the joint estimation, the Realized GARCH model now outperforms the GARV

model at all moneyness subcategories and the relative performances across maturities

as well as volatility levels are improved.

5.5 Out-of-sample pricing performance

Because the Realized GARCH model has far more parameters than the conventional

GARCH models, one might worry that its superior in-sample performace is driven by

over-fitting of the data. To verify that this is not the case, we proceed with an out-of-

sample comparison.

There are several ways of performing an out-of-sample evaluation in the option pricing

literature. 1) Estimate parameters with the first several years in the whole sample, keep

the parameters fixed and value option prices in the following years (Christoffersen and

Jacobs (2004)). 2) Estimate parameters with a rolling window and value options for the

next day (Christoffersen and Diebold (2006)). 3) Use Wednesday options to estimate

parameters, keep the parameters fixed and value Thursday options within the same time

span (Christoffersen et al. (2010)).

In consideration of our sample size and the time consumption of parameter estimation,

15



we use the first and the last methods in our paper:

1. THU2000-2012: Estimate parameters using Wednesday data from 2000/1 to

2012/12 and calculate price for Thursday options from 2000/1 to 2012/12.

2. WED2013-2014: Estimate parameters using Wednesday data from 2000/1 to to

2012/12 and calculate price for Wednesday options from 2013/1 to 2014/12.

The first method is not exactly a full out-of-sample method as it involves underlying

information from future trading days. It is considered out-of-sample because options in

Thursday are not used when minimizing the pricing error. The second method is a full

out-of-sample method, as neither options nor underlying information are used during the

out-of-sample period.

[Insert Table 5 and 6 here]

Joint estimation

Table 5 provides results based on joint estimation parameters. The left columns are

associated with Thursday pricing performance and the right columns are for Wednesday

pricing performance.

Because model parameters are estimated with information from the future when

we value Thursday options, this comparison is similar to an in-sample fit. The only

difference is that the Realized GARCH model has even better relative performance for

some subcategories than was the case before. Now the Realized GARCH model also

outperforms the GARV model at medium volatility levels, some longer maturities, and

less deep out-of-the money options.

For Wednesday pricing performance (the pure out-of-sample period), we find that

models with realized measures still have better performance. Improvement of the

Realized GARCH model is very significant over other models: an 18.9% IVRMSE

reduction compared to the GARV model and at least 22.3% IVRMSE reduction

compared with other models. For subcategory comparison, the relative performance of

the Realized GARCH model and the GARV model are quite different compared with

in-sample and Thursday out-of-sample cases. We find that the Realized GARCH model

has better performance than the GARV model over most moneyness and longer

maturities. The GARV model has better performance than the Realized GARCH

model when the volatility index level is high.

NLS estimation

Again, the NLS results shown in Table 6 confirm what we get from the joint

estimation. For Thursday pricing performance, the Realized GARCH model is better

than the GARV model with 10.9% total IVRMSE reduction and dominates other

models by at least 18.1% total IVRMSE reduction. The GARV model still outperforms

the Realized GARCH model in the longest maturities and one low volatility level while

the Realized GARCH model works better for the rest of the cases.
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For Wednesday pricing performance, the Realized GARCH model is still the best

with 30.7% reduction over the GARV model and at least 29.4% reduction over other

models in terms of total IVRMSE. We also find slightly larger IVRMSE for the Realized

GARCH, GARV and NGARCH models which indicates a possible over-fitting for the

NLS method. For subcategories, the Realized GARCH model outperforms the other

models in most cases. Compared to the GARV model, the Realized GARCH model has

better performance over all moneyness groups, maturities over 30 days, and low volatility

levels. This result is slightly better than the case in joint estimation where the GARV

model beats the Realized GARCH model in five instead of three subcategories.

6 Conclusions

In this paper, we provide an Edgeworth expansion based analytical approximation

option pricing formula for the Realized GARCH model. Unlike existing option pricing

models that utilizes realized measures, our model has a non-affine exponential GARCH

model structure.

We have pointed out that existing approximations for GARCH models, that are

labeled "Edgeworth" are in fact Gram-Charlier approximations. Fortunately, the

Edgeworth expansion we have derived for the Realized GARCH model is directly to

GARCH models, by using the proper moments, as derived in Duan et al. (1999).

We have used and compared two estimation methods. A nonlinear least squares

method whose objective entirely focuses on option pricing, and joint likelihood estimation

method that simultaneously fits the dynamic properties of the underlying time series in

conjunction with option prices. We compare models and estimation methods in terms of

their empirical option pricing performance – in-sample as well as the out-of-sample. While

the nonlinear least square method, in some cases, has competitive option pricing errors

in terms of IVRMSE, some of the parameter estimates it produces are unrealistic, which

leads us to prefer the joint likelihood-based estimation method. One clear conclusion

that emerges from both in-sample results and out-of-sample results, is that the inclusion

of realized measures in this context is highly advantageous for the option pricing. The

Realized GARCH model has the best performance on average.

Our analytical and empirical results suggests some directions for further research,

which might first enhance the option pricing performance of the Realized GARCH model.

One could introduce Heston-Nandi terms into the Realized GARCH model, with the

objective of obtaining a a close-form option pricing formula, thereby avoiding the need for

approximations. Another possible direction for future research is to pursue a component-

type structure of the Realized GARCH model, which might improve its option pricing

performance at longer horizons. Finally, it would be interesting to study whether the

use of our Edgeworth approximation, brings an important improvement over the existing

Gram-Charlier approximation for conventional GARCH models. This was our experience

for the Realized GARCH model, but Figure 2 suggest that the gains may be more modest

for conventional GARCH models.
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Figure 1: Simulated density vs analytical approximation for the Realized GARCH model.
Left: Edgeworth, Right: Gram-Charlier
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Figure 2: Simulated density vs analytical approximation for the EGARCH model. Left:
Edgeworth, Right: Gram-Charlier

Table 1: Model Characteristics
Model Parameters(P/Q) Underlying E Premium V Premium Spec. Closed Form
RG 12/10 Ret + RV Yes Yes Log-linear No

GARV 10/10 Ret + RV Yes Yes Linear Yes
EG 5/5 Ret Yes No Log-linear No
NG 5/4 Ret Yes No Linear No
GJR 5/5 Ret Yes No Linear No
HNG 5/4 Ret Yes No Linear Yes
E premium = Equity premium. V premium = Volatility premium. Spec. = Specification. Ret = Return.
RV = Realized variance. Close Form = close form pricing formula. The parameter σe is not included in the count, because it simply measures
the weighted option pricing error.
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Table 2: Option data set summary
Panel A: Wednesday: 2000-2012

Maturity
<30 30−60 60−90 90−120 120−150 >150 Total

Delta

<0.3 369 549 548 434 240 225 2365
(0.199) (0.186) (0.180) (0.182) (0.177) (0.176) (0.184)

0.3−0.4 372 322 265 246 123 98 1426
(0.178) (0.183) (0.186) (0.200) (0.191) (0.194) (0.187)

0.4−0.5 406 443 382 261 109 122 1723
(0.184) (0.200) (0.195) (0.208) (0.202) (0.204) (0.197)

0.5−0.6 550 662 692 444 192 200 2740
(0.192) (0.200) (0.209) (0.227) (0.222) (0.217) (0.208)

0.6−0.7 514 579 545 417 214 217 2486
(0.204) (0.215) (0.217) (0.237) (0.223) (0.224) (0.218)

>0.7 989 1523 1502 1059 588 480 6141
(0.249) (0.251) (0.252) (0.263) (0.244) (0.243) (0.252)

Total 3200 4078 3934 2861 1466 1342 16881
(0.210) (0.218) (0.219) (0.231) (0.219) (0.218) (0.219)

Panel B: Thursday: 2000-2012
Maturity

<30 30−60 60−90 90−120 120−150 >150 Total

Delta

<0.3 270 535 563 410 249 213 2240
(0.190) (0.182) (0.178) (0.185) (0.177) (0.178) (0.182)

0.3−0.4 242 331 300 227 118 117 1335
(0.169) (0.184) (0.186) (0.205) (0.189) (0.189) (0.186)

0.4−0.5 297 420 379 256 114 106 1572
(0.182) (0.191) (0.195) (0.208) (0.198) (0.203) (0.194)

0.5−0.6 357 669 670 494 188 183 2561
(0.188) (0.200) (0.204) (0.221) (0.219) (0.214) (0.206)

0.6−0.7 342 606 516 377 207 211 2259
(0.207) (0.214) (0.220) (0.244) (0.223) (0.225) (0.221)

>0.7 750 1511 1456 1002 574 525 5818
(0.248) (0.253) (0.250) (0.263) (0.245) (0.244) (0.252)

Total 2258 4072 3884 2766 1450 1355 15785
(0.208) (0.217) (0.217) (0.231) (0.219) (0.219) (0.219)

Panel C: Wednesday: 2013-2014
Maturity

<30 30−60 60−90 90−120 120−150 >150 Total

Delta

<0.3 196 246 146 143 92 87 910
(0.109) (0.103) (0.111) (0.114) (0.116) (0.118) (0.110)

0.3−0.4 175 137 59 66 32 33 502
(0.109) (0.113) (0.119) (0.123) (0.128) (0.132) (0.116)

0.4−0.5 188 159 73 86 43 39 588
(0.116) (0.120) (0.127) (0.133) (0.136) (0.139) (0.124)

0.5−0.6 172 168 130 93 47 42 652
(0.128) (0.130) (0.138) (0.139) (0.146) (0.148) (0.135)

0.6−0.7 197 132 80 98 52 41 600
(0.138) (0.139) (0.148) (0.153) (0.161) (0.163) (0.146)

>0.7 503 656 410 401 201 164 2335
(0.159) (0.172) (0.185) (0.189) (0.192) (0.198) (0.178)

Total 1431 1498 898 887 467 406 5587
(0.134) (0.142) (0.154) (0.157) (0.160) (0.161) (0.147)

Note: The number of options in each category is provided, average implied volatility is in parentheses.
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Appendix A: Proof of Proposition 1

Lemma 1. Let z follow the standard normal distribution. The integration

G (k, σ, n) =

ˆ k

−∞
(z − σ)n φ (z) dz

for any n ∈ N and σ ∈ R+ satisfies the following iteration equations

G (k, σ, n+ 2) = (n+ 1)G (k, σ, n)− σG (k, σ, n+ 1)− (k − σ)n+1φ (k)

G (k, σ, 0) = Φ (k)

G (k, σ, 1) = −σΦ (k)− φ (k)

Proof. Integrating by part yields

G (k, σ, n) = 1
n+1 (k − σ)n+1 φ (k) + 1

n+1

ˆ k

−∞
(z − σ)n+2 φ (z) dz

= + σ
n+1

ˆ k

−∞
(z − σ)n+1 φ (z) dz

Multiplying (n+ 1) on both sides, we have

(n+ 1)G (k, σ, n) = (k − σ)n+1 φ (k) +G (k, σ, n+ 2) + σG (k, σ, n+ 1)

Which can be rearranged as

G (k, σ, n+ 2) = (n+ 1)G (k, σ, n)− σG (k, σ, n+ 1)− (k − σ)n+1φ (k)

It is easy to see that G (k, σ, 0) = Φ (k). For n = 1,

G (k, σ, 1) =

ˆ k

−∞
(z − σ)φ (z) dz =

ˆ k

−∞
zφ (z) dz − σΦ(k) = −φ (k)− σΦ(k)

Proof outline of Proposition 1

Proof. By definition, we have ST = S0 exp(RT ) = S0 exp(µ+ σz) so that

ST ≥ K ⇔ −z ≤ log(S0/K)+µ
σ .

So if we set k = {log(S0/K) + µ}/σ the price of an European call is then:

e−rTEQ0 (max (ST −K, 0)) = e−rT
ˆ k

−∞
[S0 exp (µ− σz)−K] g (z) dz,

where g is the density of z, We approximate this density using the following 2nd order

Edgeworth expansion with a Gaussian reference density:

g̃ (z) =
{

1− k3
6 H3(z) + (k4−3)

24 H4(z) +
k23
72H6(z)

}
φ (z) ,
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where H3(z) = z3 − 3z, H4(z) = z4 − 6z2 + 3, and H6(z) = z6 − 15z4 + 45z2 − 15 are

Hermite polynomials. With this analytical approximation we have:

e−rT
ˆ k

−∞
(ST −K)g̃ (z) dz = e−rT

ˆ k

−∞

[
S0e

µ−σz −K
]
φ (z) dz (A)

−k3
6 e
−rT
ˆ k

−∞

[
S0e

µ−σz −K
]
H3(z)φ (z) dz (B)

+ (k4−3)
24 e−rT

ˆ k

−∞

[
S0e

µ−σz −K
]
H4(z)φ (z) dz (C)

+
k23
72e
−rT
ˆ k

−∞

[
S0e

µ−σz −K
]
H6(z)φ (z) dz. (D)

The first three terms, A, B, and C, are derived in Duan et al. (1999), and the fourth and

last term, D, is derived next.

e−rT
ˆ k

−∞

[
S0e

µ−σz −K
]
H6(z)φ (z) dz

= S0 e
−rT
ˆ k

−∞
eµ−σzH6(z)φ(z)dz︸ ︷︷ ︸
=D1

−Ke−rT
ˆ k

−∞
H6(z)φ(z)dz︸ ︷︷ ︸

=D2

For D1 we have

D1 = e−rT
ˆ k

−∞

1√
2π

exp
(
− z2

2 − σz + µ
) (
z6 − 15z4 + 45z2 − 15

)
dz

= e−rT+
σ2

2
+µ

ˆ k

−∞

1√
2π

exp
(
− (z+σ)2

2

) (
z6 − 15z4 + 45z2 − 15

)
dz

= eδσ
ˆ d

−∞

(
(x− σ)6 − 15(x− σ)4 + 45(x− σ)2 − 15

)
φ(x)dx,

where δ, d are given in Proposition 1. From Lemma 1, we have

D1 = eδσ (G(d, σ, 6)− 15G(d, σ, 4) + 45G(d, σ, 2)− 15)

D2 = G(k, 0, 6)− 15G(k, 0, 4) + 45G(k, 0, 2)− 15.

Collecting terms and simple algebra reveals that D is equal to:

k23
72
S0e

δσσ
[
σ5Φ(d) +

(
3− 6d2 + d4 + 5σ

(
d− (d− σ)(σd− 2)− (d− σ)3

))
φ(d)

]
.
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Appendix B: Analytical results for the included terms

The moment of cumulative returns can be expressed as:

EQ0 (RsT ) = EQ0

[
T∑
i=1

(
r − 1

2ht+i +
√
ht+izt+i

)s]

Expanding the formula, we have:

EQT (RT ) = Tr − 1
2

T∑
i=1

EQ0 [hi]

EQ0
(
R2
T

)
= T 2r2 − Tr

T∑
i=1

EQ0 [hi] +
1

4
SD1 + SD2 − SD3

EQ0
(
R3
T

)
= T 3r3 − 3

2
T 2r2

T∑
i=1

EQ0 [hi] + 3Tr

(
1

4
SD1 + SD2 − SD3

)
+

(
−1

8
ST1 + ST2 +

3

4
ST3 −

3

2
ST4

)
EQ0
(
R4
T

)
= T 4r4 − 2T 3r3

T∑
i=1

EQ0 [hi] + 6T 2r2
(

1

4
SD1 + SD2 − SD3

)
+Tr

(
−1

2ST1 + 4ST2 + 3ST3 − 6ST4
)

+

(
1

16
SQ1 + SQ2 − 1

2SQ3 +
3

2
SQ4 − 2SQ5

)
.

We use SD3 and ST1 as examples to illustrate how those terms are related with

summations of expectations of future volatility and shocks. Readers are encouraged to

see Duan et al. (1999) for detailed information of other SDi, ST i and SQi.

SD3 = EQ0

 T∑
i=1

T∑
j=1

hi
√
hjzj

 =
T∑
i=1

T−i∑
j=1

EQ0 [
√
hizihi+j ].

So in order to compute SD3 we need to calculate (B.6) (defined below).

ST1 = EQ0

 T∑
i=1

T∑
j=1

T∑
k=1

hihjhk


= 6

T∑
i=1

T−i∑
j=1

T−i−j∑
k=1

EQ0 [hihi+jhi+j+k] + 3

T∑
i=1

T−i∑
j=1

EQ0 [h2ihi+j ]

+3
T∑
i=1

T−i∑
j=1

EQ0 [hih
2
i+j ] +

T∑
i=1

EQ0 [h3i ].

Similarly, to compute ST3 we need the terms, (B.3), (B.4), (B.5) and (B.1) for m = 3,

that are defined below.
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Terms Needed for SDi, ST i and SQi

In this section we derive the key terms that are needed to evaluate SDi, ST i and SQi.

From the risk neutral dynamics, we simplify the notation as

log ht+1 = ω̃ + β log ht + vt,

where ω̃ = ω + χσ̃, σ̃ = γσ, vt = τt(z
∗
t − λ) + τ2((z

∗
t − λ)2 − 1) + σ̃u∗t .

Expectations without z

Using the simplified notation, we have:

EQ0 (hmi ) = EQ0

[
exp

(
mβi−1 log ht+1

)
exp

(
i−1∑
k=1

mω̃βk

)
exp

(
i−1∑
k=1

mβi−1−kv1+k

)]

= hmβ
i−1

1

i−2∏
k=0

emβ
kω̃EQt

[
emβ

kv1+k

]
.

Let Fk(m) = emβ
kω̃EQ0

[
emβ

kv1+k
]
, suppress star and t on z and u. We have

Fk(m) = emβ
kω̃EQ0

[
exp

(
mβkτ2λ

2 −mβkτ1λ−mβkτ2 +mβk
(
τ2z

2 − (2τ2λ− τ1) z
))

exp
(
mβkσ̃u

)]
= emβ

kω̃ exp
[
mβkτ2λ

2 −mβkτ1λ−mβkτ2 + m2β2kσ̃2

2

]
EQt exp

(
mβk

(
τ2z

2 − (2τ2λ− τ1) z
))

= emβ
kω̃ exp

[
mβk

(
τ2(λ2 − 1)− τ1λ+ mβkσ̃2

2 − (τ1−2τ2λ)2
4τ2

)]
×EQt

[
mβkτ2

(
z + (τ1−2τ2λ)

2τ2

)2]
.

The last term in the third equation is essentially a moment-generating function of the

non-central chi square distribution. Therefore we have:

EQ0

[
mβkτ2

(
z + (τ1−2τ2λ)

2τ2

)2]
= 1√

1−2mβkτ2
exp

[
mβk(τ1 − 2τ2λ)2

4(1− 2mβkτ2)τ2

]
.

Next, we substitute the expression into Fk(m), and find

Fk(m) = 1√
1−2mβkτ2

exp
[
mβk

(
ω̃ + τ2(λ

2 − 1)− τ1λ+ mβkσ̃2

2 + mβk(τ1−2τ2λ)2
2(1−2mβkτ2)

)]
.

Therefore we have:

EQ0 (hmi ) = hmβ
i−1

1

i−2∏
k=1

Fk(m) (B.1)

. Similar techniques yield:

EQ0 (hihi+j) = EQ0 [hβ
j+1
i ]

j∏
k=1

Fk(1) = EQ0 [hβ
j+1
i ]EQ0 [hj+1]h

−βj
1 (B.2)

EQ0 (hihi+jhi+j+k) = EQ0
[
hβ

j+1+βj+k

i

]
EQ0
[
h1+β

k

j+1

]
EQ0 [hk+1]h

−βj(1+βk)−βk
1 (B.3)

EQ0 (h2ihi+j) = EQ0
[
hβ

j+2
i

]
EQ0 [hj+1]h

−βj
1 , (B.4)

EQ0 (hih
2
i+j) = EQ0

[
h2β

j+1
i

]
EQ0
[
h2j+1

]
h−2β

j

1 . (B.5)
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Expectations with z

When z is involved, the following auxiliary results are needed. Let Yi = ω̃ + vi, then
we have:

EQ0 (zi exp(kYi)) = EQ0
[
zi exp

(
kω̃ + kτ1(zi − λ) + kτ2[(zi − λ)2 − 1] + kσ̃ui

)]
= EQ0

[
zi exp

(
kτ2z

2
i + k(τ1 − 2τ2λ)zi

)]
exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + k2σ̃2

2

)
= exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
1√
2a

ˆ
z 1√

2π/2a
exp(− (z−b/2a)2

2/a )dz

= exp
(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
b

(2a)3/2
,

EQ0 (z2i exp(kYi)) = EQ0
[
z2i exp

(
kω̃ + kτ1(zi − λ) + kτ2[(zi − λ)2 − 1] + kσ̃ui

)]
= EQ0

[
z2i exp

(
kτ2z

2
i + k(τ1 − 2τ2λ)zi

)]
exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + k2σ̃2

2

)
= exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
1√
2a

ˆ
z2 1√

2π/2a
exp(− (z−b/2a)2

2/2a )dz

= exp
(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
b2+2a
(2a)5/2

,

EQ0 (z3i exp(kYi)) = EQ0
[
z3i exp

(
kω̃ + kτ1(zi − λ) + kτ2[(zi − λ)2 − 1] + kσ̃ui

)]
= EQ0

[
z3i exp

(
kτ2z

2
i + k(τ1 − 2τ2λ)zi

)]
exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + k2σ̃2

2

)
= exp

(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
1√
2a

ˆ
z3 1√

2π/2a
exp(− (z−b/2a)2

2/2a )dz

= exp
(
kω̃ − kτ1λ+ kτ2(λ2 − 1) + b2

4a + k2σ̃2

2

)
b3+6ab
(2a)7/2

,

where a = 1
2 − kτ2,b = k(τ1 − 2τ2λ). In the following calculations, we still use the similar

technique in deriving (B.1) and link expectations with these terms.

EQ0 (
√
hizihi+j) = EQ0

[
h
(βj+

1
2 )

i

]
EQ0
[
zi exp(βj−1Yi)

]
EQ0 [hj ]h

−βj−1

i (B.6)

EQ0 (hi
√
hi+jzi+jhi+j+k) = EQ0

[
zi+j exp

(
βk−1Yi+j

)]
EQ0

[
h
βj(βk+

1
2 )+1

i

]
EQ0

[
h
(βk+

1
2 )

j+1

]
×EQ0 (hk)h

−βj(βk+
1
2 )−β

k−1

1 (B.7)

EQ0 (
√
hizihi+jhi+j+k) = EQ0

[
zi exp

(
βj−1(1 + βk)Yi

)]
EQ0

[
h
βj(βk+1)+

1
2

i

]
EQ0
[
h
(βk+1)
j

]
×EQ0 (hk+1)h

−βj−1(βk+1)−βk

1 (B.8)

EQ0 (h
3/2
i zihi+j) = EQ0

[
zi exp

(
βj−1Yi

)]
EQ0
[
h
βj+ 3

2
i

]
EQ0 [hj ]h

−βj−1

1 (B.9)

EQ0 (
√
hizih

2
i+j) = EQ0

[
zi exp

(
2βj−1Yi

)]
EQ0

[
h
2βj+

1
2

i

]
EQ0
[
h2j
]
h−2β

j−1

1 (B.10)

EQ0 (
√
hizi

√
hi+jzi+jhi+j+k) = EQ0

[
zi exp

(
βj−1

(
1
2 + βk

)
Yi
)]

EQ0
[
zi+j exp

(
βk−1Yi+j

)]
×EQ0

[
h
βj

(
βk+

1
2

)
+

1
2

i

]
EQ0

[
h

(
βk+

1
2

)
j

]

×EQ0 [hk]h
−βj−1(βk+

1
2 )−β

k−1

1 (B.11)

EQ0 (hiz
2
i hi+j) = EQ0

[
z2i exp

(
βj−1Yi

)]
EQ0
[
hβ

j+1
i

]
EQ0 [hj ]h

−βj−1

1 (B.12)
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With a = βm + 1 and b = aβk + 1
2 :

EQ0 (
√
hizi

√
hi+jzi+jhi+j+khi+j+k+m)

= EQ0

(√
hizi

√
hi+jzi+jhi+j+kh

βm

i+j+k exp

(
k∑

w=1

βw−1Yi+j+k+m−w

))

= EQ0

(√
hizi

√
hi+jzi+jh

a
i+j+k

[
hβ

m

1 exp

(
k∑

w=1

βw−1Yi+j+k+m−w

)])
h−β

m

1

= EQ0
(√

hizi
√
hi+jzi+jh

a
i+j+k

)
EQ0 (hm+1)h−β

m

1

= EQ0
(√

hizih
b
i+j

)
EQ0
(
zi+j exp

(
aβk−1Yi+j

))
EQ0 (hak)EQ0 (hm+1)h−β

m

1 h−aβ
k−1

1

= EQ0

(
h
bβj+

1
2

i

)
EQ0 (hbj)E

Q
0 (hak)EQ0 (hm+1)EQ0

(
zi exp

(
bβj−1Yi

))
× EQ0

(
zi+j exp

(
aβk−1Yi+j

))
h
−(βm+aβk−1+bβj−1)
1 (B.13)

With m = βk + 1

EQ0 (hiz
2
i hi+jhi+j+k) = EQ0

[
hmβ

j+1
i

]
EQ0
[
hmj
]
EQ0 [hk+1]× EQ0

[
z2i exp

(
βj−1Yi

)]
h
−(βk+mβj−1)
1

(B.14)

EQ0 (hihi+jz
2
i+jhi+j+k) = EQ0

(
hihi+jz

2
i+jh

βk

i+j exp

(
k∑

w=1

βw−1Yi+j+k−w

))

= EQ0

(
hih

βk+1
i+j z2i+j exp

(
βk−1Yi+j

)
hβ

k−1

1 exp

(
k−1∑
w=1

βw−1Yi+j+k−w

))
h−β

k−1

1

= EQ0
(
hih

βk+1
i+j

)
EQ0
(
z2i+j exp

(
βk−1Yi+j

))
EQ0 (hk)h−β

k−1

1

= EQ0
[
hmβ

j+1
i

]
EQ0
[
hmj+1

]
EQ0 [hk]EQ0

[
z2i+j exp

(
βk−1Yi+j

)]
h
−(βk−1+mβj)
1

(B.15)

EQ0 (
√
hizihi+jz

2
i+jhi+j+k) = EQ0

[
h
mβj+

1
2

i

]
EQ0
[
hmj
]
EQ0 [hk]EQ0

[
zi exp

(
mβj−1Yi

)]
×

EQ0
[
z2i+j exp

(
βk−1Yi+j

)]
h
−(βk−1+mβj−1)
1 (B.16)

With w = βm + 1
2 and s = wβk + 1

2 :

EQ0 (
√
hizi

√
hi+jzi+j

√
hi+j+kzi+j+khi+j+k+m)

= EQ0

(
h
sβj+

1
2

i

)
EQ0
(
zi exp

(
sβj−1Yi

))
EQ0
(
zi+j exp

(
wβk−1Yi+j

))
EQ0
(
zi+j+k exp

(
βm−1Yi+j+k

))
× EQ0 (hsj)E

Q
0 (hwk )EQ0 (hm)h

−(βm+wβk−1+sβj−1)
1 (B.17)

With m̃ = βk + 1
2 :

EQ0 (hiz
2
i

√
hi+jzi+jhi+j+k) = EQ0

[
hm̃β

j+1
i

]
EQ0
[
hm̃j
]
EQ0 [hk]EQ0

[
z2i exp

(
m̃βj−1Yi

)]
×

EQ0
[
zi+j exp

(
βk−1Yi+j

)]
h
−(βk−1+m̃βj−1)
1 (B.18)

EQ0 (h
3/2
i z3i hi+j) = EQ0

[
z3i exp

(
βj−1Yi

)]
EQ0
[
h
βj+ 3

2
i

]
EQ0 [hj ]h

−βj−1

1 (B.19)

Table B.1 provides a summary of here these 19 formulas are used. Duan et al. (2006)

omitted several “small” terms especially in SQi and we follow their approach in this paper.
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Table B.1: Formulas used in evaluation SDi, ST i and SQi
Formula number B.x

SD1 1 2
SD2 1
SD3 6
ST1 1 3 4 5
ST2 6
ST3 7 8 9 10
ST4 1 2 11 12
SQ2 1 11 12
SQ4 4 6 13 14 15
SQ5 7 8 9 10 16 17 18 19

Finally, the expectation of fractional powered h is evaluated through Taylor

expansion:

EQ0 [hat ] ≈
(
1 + 32

12a−
23
8 a

2 + 13
12a

3 − 1
8a

4
)
EQ0 [ht]

a

+
(
−3a+ 19

4 a
2 − 2a3 + 1

4a
4
)
EQ0 [ht]

a−2 EQ0
[
h2t
]

+
(
4
3a−

7
3a

2 + 7
6a

3 − 1
6a

4
)
EQ0 [ht]

a−3 EQ0
[
h3t
]

+
(
−1

4a+ 11
24a

2 − 1
4a

3 + 1
24a

4
)
EQ0 [ht]

a−4 EQ0
[
h4t
]
.
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